Review of APS-DPP 2010 results:

Ultraviolet photoelectron spectroscopy analysis of lithium and deuterium interactions with graphite

C.N. Taylor, B. Heim, S. Ortoleva, J.P. Allain, C.H. Skinner, H.W. Kugel, A.L. Roquemore, R. Kaita

November 30, 2010

Outline

- Review of XPS results
- Why use UPS?
- Review of D. Ensling UPS studies
- Initial results
- Conclusions

Review of XPS results – Chemistry

Review of XPS results – Saturation

How do we calculate saturation?

<u>Deuterium saturation</u>: The point at which deuterium no longer induces changes in surface chemistry. Defined as the fluence at which the normalized derivative < 10% between consecutive irradiations.

RSSEL

A nominal lithium thickness of 2µm becomes saturated with D at a fluence of ~10¹⁷cm². NSTX lithium depositions (10s-100s nm per cycle) likely saturate after a single discharge (10¹⁷ cm⁻²).

> PURDUE Engineering

Why ultraviolet photoelectron spectroscopy?

- XPS ejects core level photoelectrons.
 - Results provide consistent elemental data with qualitative chemical interpretation.
 - Probing depth <10 nm.
- UPS ejects valence level photoelectrons.
 - Chemistry occurs at the valence level.
 - Probing depth <1 nm.

Why ultraviolet photoelectron spectroscopy?

- Objective:
 - Show that C does or does not influence Li-O-D interactions
 - Show that O does or does not influence Li-C-D interactions
- Plan:
 - Perform initial UPS experiments on post mortem samples.
 - Validated technique for our materials prior to purchasing and installing new equipment for full *insitu* studies.

Review of D. Ensling UPS studies

Process:

- 1. UPS of "virgin" lithium
- 2. Ar cleaning (1 keV, 1hr)
- 3. Ar cleaning (3 keV, 2hr)
- 4. O exposure (45 sec)
- 5. O exposure (570 sec)
- 6. Air exposure (5 min)

Identification of peaks lines:

- A (6 eV) and C (10.5eV): O 2p
- **B** (8.5 eV): O 2p/C 2sp
- **D** (11.5 eV): C 2sp/O 2p
- E (15.2 eV): C 2s

PURDUE

ENGINEERING

Initial results

Samples:

- Mo205p Porous molybdenum exposed to ~1 week of NSTX plasmas via the sample analysis probe. Lithium conditioning preceded deuterium plasma discharge. Sample removed and analyzed at Purdue. Note that MAPP will allow for in-vacuo characterization at NSTX, thus simplifying this procedure.
- ATJ401p ATJ graphite sample exposed to simultaneously with Mo205p to NSTX plasmas.
- ATJ147a ATJ graphite with 2µm lithium deposition and D₂⁺ irradiation at Purdue University. Post-mortem UPS analysis follows long term air exposure and includes Ar sputtering for surface cleaning.

Initial results – XPS

XPS survey to verify the presence of Li

 Second peak (Li-O) in O1s buried in shoulder?

Initial results – UPS

Notes:

- Peaks have 3 prominent peaks resembling (though not perfectly) Li-Carbonate peaks found by Ensling.
- Spurious spectra occurred for unknown reasons.
- Since UPS probes <1 nm, it is expected that Mo probe sample will be similar to ATJ samples.

Identification of peaks lines:

- **A** (6 eV) and **C** (10.5eV): O 2p
- **B** (8.5 eV): O 2p/C 2sp
- **D** (11.5 eV): C 2sp/O 2p
- **E** (15.2 eV): C 2s

RSSEL

Initial Results

 Peaks from post-mortem probe samples resemble Li-Carbonate peaks seen by D. Ensling.

Conclusions

- X-ray photoelectron spectroscopy
 - We can observe the peaks responsible for D retention.
 - Li-O-D at 533.0 eV
 - Li-C-D at 291.4 eV
 - We cannot conclusively isolate O from C-related bonds C from O-related bonds.
- Ultraviolet photoelectron spectroscopy
 - Replicated results similar to other studies, thus validating this method for lithiated graphite.
 - Will now begin a full campaign of controlled studies
 - Equipment will arrive shortly!

Results – Connect to reality

• How do offline, control experiments compare to post mortem tiles?

Post mortem tiles exhibited broad peaks; amorphous nature and surface contamination are suspected contributors.

After cleaning procedure (Ar sputtering and heating), peaks reflect those discovered in controlled experiments.

PURDUE

ENGINEERING

Comparisons of Ion Beam data with XPS

Lithium dependence on surface chemistry

RSSEL

AJT139 vs. post-mortem tile near LITER

NSTX Tile A235-021-2

Staged Ar cleaning

<u>ATJ139</u>

- Lithium conditioning
- 6 NSTX NB plasma shots
- Ar cleaning
- TDS performed at Purdue

Lithium dose affects Li-D-O-C functionality

Li-30nm post deposition, post D irradiation

Li-2000 nm post deposition, post D irradiation

PURDUE ENGINEERING

