XP1032: Error Field Threshold scalings

by Richard Buttery¹

with Stefan Gerhardt², Rob La Haye¹, Jong-Kyu Park², Steve Sabbagh³

Presented to NSTX mini-results review, Sep 2010

¹General Atomics, USA ²Princeton Plasma Physics Laboratory, NJ. ³Columbia University, NY.

Work funded by the US DOE.

In H modes, Error Fields Destabilize Rotating Modes

- Error field brakes plasma:
 - If close to 2/1 NTM beta limit, the 2/1 NTM can is destabilised by the reduction in rotation shear
 - Further from NTM limit rotation braking reaches bifurcation point for 'penetration' – bifurcation to large locked mode

- Key point is mode forms when substantial braking
 - Criteria is about overcoming plasma rotation
 - A lot like Ohmic criterion
- Look for similar threshold scaling at given β_N and profiles

Proposals for 2010 on NTMs & EFs, 2 R J Buttery, NSTX XP team review, Sep 2010

Error Field Braking Changes NTM stability: Action through n=1 or n=3 fields

 Rotating mode accessed at lower bootstrap drive with less rotation shear →

- But can get two types of mode
 - Locked or rotating
 - What is practical limit given these apparently different processes?

Proposals for 2010 on NTMs & EFs, 3 R J Buttery, NSTX XP team review, Sep 2010

Goal XP 1032: Obtain Scaling of Error Field Threshold in H-modes to Predict Future Devices

- Error field threshold dictated by a torque balance
 - When electromagnetic torque overcomes inertia & viscosity
 - Shielding response bifurcates to resonant widespread tearing

- Scalings obtained for Ohmic regimes, but H mode may differ:
 - Proximity to NTM: weak Δ ' stability?
 - Underlying rotation may scale differently cf Ohmic
 - Experiments to measure principal scalings with B_T and density
 - Infer machine size scaling from dimensional invariance:

 $B_{pen}/B_T \propto n^{\alpha_n} R^{\alpha_R} B^{\alpha_B} q^{\alpha_q}$

Proposals for 2010 on NTMs & EFs, 4 R J Buttery, NSTX XP team review, Sep 2010

Experiments to Extrapolate EF Thresholds to Next Step Devices like ST-CTF or ITER

- Ramp up error field to measure mode thresholds
- Scan in ne and Bt
 - Infer machine size scaling from Connor-Taylor constraint
- Hard part:
 - Maintain constant shape, betan, li, density and q profile at time of mode onset
- Goal: Understand how the torque balance based error field threshold extrapolates to future devices.

Proposals for 2010 on NTMs & EFs, 5 R J Buttery, NSTX XP team review, Sep 2010

Experiment

- Built on 2009 shot (shown)
 - β_N feedback added to give constant β_N with time
 - Worked well at 3 different Bt values
 - Avoided need to repeated retune discharges to reach target
 - Lithium to control ELMs & conditions
 - Avoid as tearing trigger
 - Required more this year: 150mg/shot

n=1 field ramps to trigger mode

- ✓ Scan 3 B_T at constant q₉₅
- Adjust field ramp and gas to compensate for density & q₀ variation

Raw data suggests a dependence with Bt

- Full B_τ range explored lowest, highest & middle
 - 0.35T/0.7MA to 0.55T/1.1MA
- Wide variation in thresholds
 - β_N, density, q profile play a role in changing threshold & varied somewhat across points taken
 - Requires careful analysis to strip out – data taken to enable this
- Some reasonably matched shots show preliminary trend
 - Well fitted by offset linear or quadratic fits
 - But possible underlying density dependence...

Proposals for 2010 on NTMs & EFs, 7 R J Buttery, NSTX XP team review, Sep 2010

Underlying density variation plays a strong role

- Lower field shots are lower in density
- Threshold correlate with density
 - Consistent with linear or steeper scaling:

Need to see if we can pull out trends with fitting & phenomonelogy...

Proposals for 2010 on NTMs & EFs, 8 R J Buttery, NSTX XP team review, Sep 2010

After density dependence extracted, residual dependencies seem small

- Use offset linear density fit to correct out density variation
 - No obvious trend in other variables now! \rightarrow
 - Can we do better based on phenomenology?...

R J Buttery,

Make a fit based on intuition

- Hypothesize power law form constructed:
 - Positive density dependence seems clear
 - Shot phenomenology shows less or no error field needed if higher β_{N} suggests negative β_{N} exponent
 - Arbitrary TF coefficient
- Start from this and vary coefficients by hand to minimise residual
 - Actually get a better fit than regression fitting!
- Form found:

 $I_{pen} \sim n_e \beta_N^{-1.25} B_T^{0.6}$

Can we constrain more than one variable?

Proposals for 2010 on NTMs & EFs, 10 R J Buttery, NSTX XP team review, Sep 2010

Is there a residual dependence in the fit?

- Stripping out density dependence → leaves weak correlation
 - Further analysis shows might be B_T or $\beta_{N'}$
 - but neither is well constrained & there may be no further trend!
 - Possible further hidden variables?
 - Keep looking!
 - q profile, MHD?

0 50 100 150 200 hyp fit/dens

y = 0.9948x

 $R^2 = 0.1323$

250

200

sup/ued 100

50

0

Proposals for 2010 on NTMs & EFs, 11 R J Buttery, NSTX XP team review, Sep 2010

Conclusions

- Wide scan of error field thresholds made in H-modes
 - Bt is main unknown parameter for extrapolation
 - Other parameters varied to strip out their natural variation
- Principal dependence observed was with density!
 - Other dependencies are too weak to see or below scatter
 - Lack of strong negative trend with BT at least encouraging for future devices
- H mode error field threshold scalings seem to go linearly or steeper with density → good for future devices
- Bit more work to do look at phenomenology and consider further hidden variables suggestions welcome...

Proposals for 2010 on NTMs & EFs, 12 R J Buttery, NSTX XP team review, Sep 2010

Proposals for 2010 on NTMs & EFs, 13 R J Buttery, NSTX XP team review, Sep 2010

Shot Plan – logic here – see XP for detail

- 1. Establish reference 0.9MA 0.44T and tune if needed 3 shots
- 2. Change density (ideally: puff gas after 300ms to avoid big profile effect) +30-40%
 - If needed tune heat switch on time
 - Tune EF ramp rate/time to get mode at same betan and time
- 3. Tune shot to get mode at same time and beta
- 4. Further density step up +60% cf 1
- 5. TF & Ip scan (fixed q95) to 0.3T and 0.6T, with tuning as above.

Proposals for 2010 on NTMs & EFs, 14 R J Buttery, NSTX XP team review, Sep 2010

Reserve: Governing Physics – á la old Ohmic theory... Penetration is about overcoming the plasma rotation

- Modes form when resonant surface is braked by resonant response to EF to half it's natural frequency
 - Tiny static island induced by EF
 - Viscous forces try to keep bulk plasma rotating slipping past the island - this opposes island growth
 - Torque exerted through island and viscosity to brakes plasma
 - N=3 NTV effects assist this process?
 - If rotation slows enough, island can grow, increasing torque and bifurcating to a locked mode state
 - Threshold scales as $B_{pen} \sim B_T \omega_0 \tau_A (\tau_{rec} / \tau_v)^{1/2}$
 - ω_0 often taken to be electron diamagnetic rotation
- Criteria could also be regarded/generalised as condition for when we approach rapid rotation change
- Critical elements are: what determines ω_0 ; whether plasma response changes; and how readily plasma rotation is overcome

Proposals for 2010 on NTMs & EFs, 15

R J Buttery, NSTX XP team review, Sep 2010

But data suggests underlying density dependence

Linear

Proposals for 2010 on NTMs & EFs, 16 R J Buttery, NSTX XP team review, Sep 2010

