

Supported by

Some NSTX Halo Current Results

S.P. Gerhardt

Thanks to Larry Guttadora, Eric Fredrickson, Hiro Takahashi, Bob Kaita, Henry Kugel, Adam McLean

Late 2010 / Early 2011 Results Review

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Diagnostic Distribution

NSTX Halo Currents in NSTX- S.P. Gerhardt, et al.

Compact Current Shunts Fit Directly Beneath Tiles

Design by Stefan Gerhardt, Larry Guttadora, Eric Fredrickson, and Hiro Takahashi

Example: Downward VDE Largest Currents For Inner Ring Detectors (137258)

Halo Widths Can Be Quite Large (137258), and Plasma Shorts-Out the CHI Gap

Raw Data Shows Rotation of Halo Current Pattern

Isolation amplifiers for shunt tile have ~100 kHz bandwidth.

Each signal is digitized twice:

National Instruments PCI digitizers at 500 kHz

Features only 1-2 samples wide in CAMAC are cleanly resolved with faster rate.

Synchronization delay between CAMAC and PCI

Propagation of structures is observed.

Fourier Analysis Confirms That the Halo Current Pattern Is Indeed Rotating

Rotation is in "positive" direction-> clockwise when viewed from above.

Opposite to both the plasma current and flat-top rotation direction.

Rotation frequency is ~1 kHz

Magnetic Signature Seen To Rotate With n=1 Halo Current Perturbation

- NSTX has a significant array of in-vessel sensors for n=1 fields.
- Bandpass filter the B_P, n=1 perturbation, look at phase progression.
- Observe magnetic signature rotating with the halo current.
- Is it possible to to control the rotation with applied n=1 fields?

Large n=1 Fields Were Not Able to Change HC Toroidal Rotation

- Deliberate VDEs, driven down, NB heated L-mode.
- n=1 fields applied just as vertical drift is beginning.
 - Large enough to drive a locked mode disruption during the VDE for 140454.
- Halo current pattern
 rotates in all cases.
 - Not encouraging for HC rotation control with applied n=1 fields

Summary

- This is just a first look...lots of data to be analyzed.
- The CHI gap is full of plasma during many downward disruptions.
- n=1 halo current perturbation is observed to rotate toroidally:
 - In the counter-current direction,
 - at ~1 kHz type frequency,
 - for 1-2 turns (typically).
- Large applied n=1 fields were not able to lock the rotation.
- Physics is important for ITER, where mechanical resonances can come into play of multiple rotations occur.

Magnetic Signatures (n=1) Still Visible Despite Large Applied n=1 Fields

