

Supported by

Office of FNFRGY Science

Measurements of disruptions with the LLD and extended diagnostic capabilities, XP1021

College W&M **Colorado Sch Mines** Columbia U **CompX General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

A. McLean, S. P. Gerhardt, J-W. Ahn, M. Jaworski, J. Kallman, L. Roquemore, F. Scotti, V. Soukhanovskii, K. Tritz

> NSTX Results Review 2010/2011 December 1st, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U **loffe Inst RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep **U** Quebec

XP1021 accomplishments in 2010

- 8/4/2010, shots 139529-139557, and
- 8/27/2010, shots 140438-140461 lots of data
- Developed 2 MW inner-wall limited L-mode shot with reliably triggered VDE using an 80 V downward bias on PF3
- Performed scans of $600 < I_p < 800 \text{ kA}$ and $0.35 < B_t < 0.55 \text{ T} (0.45 < I_p^2/B_t < 1.83)$
- Injected power/stored energy scan: P_{NBI} at 0.0, 0.3, 1.0, 2.0, 3.0, and 4.0 MW
- Repeat cases identical to previous years to test Li effect on halo currents, compare to 2009
- In support of ITPA TG DSOL-24 Disruption heat loads
 - Aim: Accounting of power balance during thermal quench and current quench
 - Desirable output: Heat load footprint size, location, duration, and scans of parameters affecting TQ duration, SOL broadening, energy dissipation, and impurity sputtering. Comparison of VDE, density limit, and beta limit disruptions

Halo current/disruption study results to date suggests significant role of lithium

- Found halo current magnitude to be significantly less than found in previous conditions of XP833 (~1/2), possibly due to presence of Li.
- Linear trend in HC magnitude vs. B_t/I_p^2 but offset from 2009
- High surface heat fluxes through disruption with dual-band fast IR camera (1.6 KHz, 10-75 us integration time, 0.621 ms frame-to-frame time) (Ahn/McLean)
- Structure observed in I_{sat} of high density Langmuir probe array during disruptions, ripe for T_e measurements (Jaworski)
- Full fast camera view of lower divertor will allow estimation of Li and C fluxes from the floor through disruption (Scotti/Roquemore)

Fast visible cameras, Lil and Lill (F. Scotti)

•Bay E Top View

- •Shot 139550
- ←Li I (670 nm)
- 1 microsec.
- Li II (548.5 nm) →
 2 microsec.

•Bay J Top View

Fast visible cameras, CII and CIII (F. Scotti)

•Bay E Top View

•Shot 139551

← C II (426.8 nm) •3 microsec.

•C III (465.0 nm) →

•2 microsec.

•(image enhanced)

•Bay J Top View

5

Triple probe acquisition (M. Jaworski)

- Super-tile acquisition system operating during XP1021
- Large current transients observed during disruptions (log scale)
- Strike-point well beyond probe array

 small signals on inboard probes initially
- Current density from nominal probe head

Triple probe acquisition (M. Jaworski)

- Structure observed during disruption, particularly in floating potential
- Disruptions prone to saturating signals (indicated by horizontal line in time trace)
- Still analyzing signals for T_e estimation...

Fast Infrared (A. McLean, J-W. Ahn)

- 2-D surface temperature shows significant turbulence
- T, q in t shows interesting pre-collapse signature
- Peak q using THEODOR (α=10,000) shows much (~5-10X) lower value than 1-D C&J
- Fast cooling of the surface shows that incorporation of surface layer physics is essential

