

Supported by

XP1023: Optimized RWM control for high <β_N>_{pulse} at low collisionality and I_i - Update

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL I odestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

S.A. Sabbagh¹, J.W. Berkery¹, J.M. Bialek¹, S.P. Gerhardt², R.E. Bell², O.N. Katsuro-Hopkins¹, J.E. Menard², R. Betti^{2,3}, D.A. Gates², B. Hu³, B.P. LeBlanc², J. Manickam², D. Mastrovito², Y.S. Park¹, K. Tritz⁴

¹Department of Applied Physics, Columbia University, NY, NY ²Plasma Physics Laboratory, Princeton University, Princeton, NJ ³University of Rochester, Rochester, NY ⁴Johns Hopkins University, Baltimore, MD

> NSTX Results / Theory Review December 1st, 2010

> > PPPI

V1.0

York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati **CEA.** Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

Culham Sci Ctr

U St. Andrews

XP1023: Optimized RWM feedback control for high <β_N>_{pulse} at low collisionality and I_i

Motivation

- Next-step ST devices (including the planned upgrade of NSTX) aim to operate at plasma collisionality and broad current (low l_i) below usual NSTX levels
- 2009 XP948 showed significantly higher RWM activity, lower β_N limit, in reduced l_i plasmas (l_i ~ 0.45 and below)
- Progress
 - Controlled collisionality scans mostly dropped, otherwise XP completed
 - Significant improvement in stabilizing low I_i target for maximum pulse length
 - Plasma had unstable RWMs without FB control at relatively high V_{ϕ}
 - Optimal settings for n = 1 RWM control with B_p feedback changed significantly
 - Analysis commencing with single and multi-mode VALEN to understand this
 - Feedback on B_R sensors optimized and works well; feedback phase setting very different than found in XP802
 - Due to OHxTF compensation of B_R in the miu algorithm, key for reproducibility
 - Best settings successfully used for fiducial, shots in general since 8/26/10; n = 1 B_p + B_R feedback used on different plasmas for comparison/analysis to low l_i plasmas

D Plasma rotation reduced in low I_i target plasmas once $B_p + B_R$ FB established

Plasmas at reduced plasma rotation just starting to be analyzed

NSTX is a spherical torus equipped to study passive and active global MHD control, rotation variation by 3D fields

- □ High beta, low aspect ratio
 - R = 0.86 m, A > 1.27
 I_p < 1.5 MA, B_t = 5.5 kG
 - **α** $β_t < 40\%, β_N > 7$
- Copper stabilizer plates for kink mode stabilization
- Midplane control coils
 - n = 1 3 field correction, magnetic braking of ω_φ by NTV
 n = 1 RWM control
- Combined sensor sets now used for RWM feedback
 - □ 48 upper/lower B_p, B_r

Operation has aimed to produce sustained low I_i and high pulse-averaged β_N

Plasmas have begun to reach low l_i and high <β_N>_{pulse} suitable for nextstep ST fusion devices

Some parameters (e.g. elongation > 3) still need to be reached selfconsistently

Ideal n = 1 no-wall stability limit decreases for low I_i plasmas

Ideal n = 1 no-wall stability limit decreases for low I_i plasmas

- Examine high plasma current, $I_p \ge 1.0MA$, high non-inductive fraction ~ 50%, $I_i \sim 0.4 - 0.5$
- Ideal n = 1 no-wall stability computed for discharge trajectory
 - □ Adding trajectories yields $\beta_N/I_i = 6.7$ for $I_i = 0.38 - 0.6$
 - Significantly lower than no-wall limit at higher I_i (β_N = 4.3)
 - RWM control will be important for future ST fusion devices

Ideal n = 1 no-wall stability limit decreases for low I_i plasmas

- Examine high plasma current, $I_p \ge 1.0MA$, high non-inductive fraction ~ 50%, $I_i \sim 0.4 - 0.5$
- Significant increase in maximum β_N/l_i

 Upper limit now between 13 - 14

- At sufficiently low I_i, "current driven kink" limit exists
 - Further analysis will examine where this boundary exists in (l_i,β_N) space

Global stability examined for experiments aimed to produce sustained low I_i and high β_N at high plasma current

I High I_p ≥ 1.0MA, high non-inductive fraction ~ 50%

Initial experiments

- □ Yielded low I_i
- **Access high** β_N/I_i
- High disruption probability
- Instabilities leading to disruption
 - Unstable RWM
 - 48% of cases run
 - Locked tearing modes

Low plasma rotation level (~ 1% ω_{Alfven}) is insufficient to ensure RWM stability, which depends on ω_{ϕ} profile

MISK code calculations show reduced stability in low I_i target plasma as ω_{ϕ} is reduced, RWM instability is approached

0.09

0.06

0.03

0.00

10

8

0.00

 $Im(\delta W_k)$

thermal

unstable

Stability evolves

- MISK computation shows plasma to be stable at time of minimum l_i
- □ Region of reduced stability vs. ω_{ϕ} found before RWM becomes unstable (I_i = 0.49)
 - Co-incident with a drop in edge density gradient – reduces kinetic stabilization

- See Xp1020 talk by J. Berkery this meeting for further MISK detail / analysis plans

RWM stability vs. ω_{ϕ} (contours of $\gamma \tau_{w}$)

w/fast particles

2.0

0.06

 $Re(\delta W_{\kappa})$

1.0

0.03

140132. t = 0.704s

 $\omega_{\phi}\!/\omega_{\phi}^{}\text{exp}$

 $\omega / \omega exp$

• 0.2

0.4

0.60.8

• 1.0

• 1.2

1.41.6

1.82.0

0.12

experiment

140132 @ 0.482 s

140132 @ 0.698 s

0.09

RWM B_r sensor n = 1 feedback phase variation shows clear settings for improved feedback when combined with B_p sensors

- Recent corrections to B_r sensors improve measurement of plasma response
 - Removed significant direct pickup of time-dependent TF intrinsic error field
 - Positive/negative feedback produced at theoretically expected phase values

Adjustment of B_p sensor feedback phase from past value further improved control performance

RWM B_R sensor feedback gain scan shows significantly reduced n= 1 radial error field

(0)

- New B_r sensor feedback gain scan on low l_i plasmas
 - Highest gain attempted (1.5) most favorable
- B_r feedback constrains slow (10's of ms) n = 1 radial field growth
 - □ Addition of n = 1 B_R sensors in feedback prevents disruptions when $|\delta B_r^{n=1}| \sim 9G$; better sustains plasma rotation

Use of combined $B_r + B_p RWM$ sensor n= 1 feedback yields best reduction of n = 1 field amplitude / improved stability

- Combination of DC error field correction, n = 1 feedback
 - Dedicated scans to optimize Br, Bp sensor feedback phase and gain
 - n = 3 DC error field correction alone subject to RWM instability
 - n = 1 B_p sensor fast RWM feedback sustains plasma
 - Addition of n = 1
 B_R sensors in feedback reduce the combined B_p +
 B_r n = 1 field to low level (1–2 G)

Improvements in stability control techniques significantly reduce unstable RWMs at low I_i and high β_N

Subset of discharges

- □ High $I_p \ge 1.0MA$
- n = 1 control enhancements
- **D** Mild ω_{ϕ} alteration

Latest results

- □ Yielded low I_i
- **Access high** β_N/I_i
- Significantly reduced disruption probability due to unstable RWM
 - 14% of cases with $\beta_N/l_i > 11$
 - Much higher probability of unstable RWMs at lower β_N, β_N/l_i

14

*More detail on RWM state space controller results shown in XP1022 talk by Y.-S. Park, et al., this meeting

Multi-mode RWM computation shows 2^{nd} eigenmode component has dominant amplitude at high β_N in NSTX stabilizing structure

δBⁿ from wall, multi-mode response

D NSTX RWM not stabilized by ω_{ϕ}

- Computed growth time consistent with experiment
- 2nd eigenmode ("divertor") has larger amplitude than ballooning eigenmode

D NSTX RWM stabilized by ω_{ϕ}

- Ballooning eigenmode amplitude decreases relative to "divertor" mode
- Computed RWM rotation ~ 41 Hz, close to experimental value ~ 30 Hz
- ITER scenario IV multi-mode spectrum
 - Significant spectrum for n = 1 and 2

15

Greater success in controlling global instabilities in low I_i target plasmas via improvements to n = 1 RWM control – analysis continues...

- □ Success in stabilizing high β_N plasmas at $I_p \ge 1$ MA with reduced I_i
 - Incidence of RWM-induced disruption greatly reduced by
 - n = 1 RWM B_p sensor settings "optimized"
 - n = 1 RWM B_R^{i} sensors added to B_p sensors in feedback
 - Best settings successfully used for fiducial and shots in general since 8/26/10; greater unstable global mode statistics
 - Further analysis will compare stability of low I_i targets to other target plasmas
- Considerable physics detail of RWM control dynamics
 - □ A few shots show RWM mode rotation, spinup, and stabilization
 - Higher probability / differences now compared to results in SAS, et al, NF 50 (2010) 025020?
 - Shots with high suppression of n = 1 B_R field (e.g. 139359 B_r feedback) show RWM rotation (favorable); correlation of mode rotation and n = 1 feedback amplitude?

Future Analysis

- Complete evaluation of disruption statistics
- Compare single and multi-mode VALEN analysis to n = 1 feedback performance
 - Including effect of different conducting structure model, $B_p + B_R$ feedback, etc.
- Ideal and MISK analysis of RWM stability of target plasmas dependence on I_i
- Plasmas rotation variation in these plasma just starting to be investigated
 - Comparison of MISK analysis of these plasmas to past MISK results to be done
- Compare to RWM state-space controller offline and real-time results