

Supported by

XP1062: NTV behavior at low ion collisionality and maximum variation of $\omega_{\rm F}$ - Update

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL I odestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

V1.0

S.A. Sabbagh¹, J.W. Berkery¹, R.E. Bell², J.M. Bialek¹, J.K. Park², K.C. Shaing³, S.P. Gerhardt², J.E. Menard², B.P. LeBlanc², Y.S. Park¹

¹Department of Applied Physics, Columbia University, NY, NY ²Plasma Physics Laboratory, Princeton University, Princeton, NJ ³University of Wisconsin, Madison, WI

> **NSTX Results / Theory Review** December 1st, 2010 PPPL

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati **CEA.** Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

XP1062 started: Verify NTV physics for next-step devices (NSTX-U to ST-CT / ITER), and support NSTX rotation control system design

Present goals

Investigate NTV-induced magnetic braking over range of collisionality, ω_E (i.e. (v_i/ε)/|nqω_E|)

- Key for ITER, ST Component Test Facility
- If $(v_i/\epsilon)/|nq\omega_E| \ll 1$: NTV saturated (indep. of v)
- If $(v_i/\epsilon)/|nq\omega_E| > 1$: NTV ~ 1/v
- If low ω_E (< ω_{VB}): NTV maximized (indep. of ν) (superbanana plateau: Shaing, et al, PPCF 51 (2009) 035009)
- Determine NTV offset rotation
 - Standard approach: observe offset by operating at near-zero ω_b
 - Consider new approach using RF (based on RF XPs from 2009) – not yet run!

2

$$\left\langle \stackrel{\wedge}{\boldsymbol{\ell}_{t}} \bullet \stackrel{\rightarrow}{\nabla} \bullet \stackrel{\leftrightarrow}{\Pi} \right\rangle_{(1/\nu)} = B_{t} R \left\langle \frac{1}{B_{t}} \right\rangle \left\langle \frac{1}{R^{2}} \right\rangle \frac{\lambda_{1i} p_{i}}{\pi^{3/2} v_{i}} \varepsilon^{3/2} (\omega_{\phi} - \omega_{NC}) I_{\lambda}$$

XP1062 started: Verify NTV physics for next-step devices (NSTX-U to ST-CT / ITER), and support NSTX rotation control system design

Motivation

Verify neoclassical toroidal viscosity physics for next-step devices (NSTX-U to ST-CT / ITER), and to support design of NSTX rotation control system

□ Goals / Approach (Progress) – 18 new shots

- $\hfill\square$ Compare magnetic braking with largest variation of v_i^* using LLD
 - Target a comparison of two conditions: low vs. high v_i^* , favor low v_i^* condition
 - RESULT: NTV braking detail measured at v_i reduced by at least a factor of 4 in region of maximum braking torque (due to lack of prefill gas) in 3 braking shots
 - RESULT: Variation in plasma rotation damping observed as v_i varied
- Generate greater variation of key parameter $(v_i/\epsilon)/|nq\omega_E|$
 - Concentrate on low ω_{E} to further examine superbanana plateau regime/theory
 - RESULT: NTV braking brought plasma to low rotation (< 7kHz core, < 2kHz ~ q=2)
 increased braking torque observed at low ω_F, analysis continues
- Determine NTV offset rotation
 - [•] Standard approach: observe offset by operating at near-zero ω_{ϕ}
 - RESULT: Latest data (as past data): no large NTV offset counter-rotation
 - NTV offset is small co-rotation if any; similar to JET, opposite to DIII-D claim
 - Consider new approach using RF (based on RF XPs from 2009) not yet run!