

Supported by Supported by Seines Science Science

XP1029: P_{LH} dependence on R_X

College W&M Colorado Sch Mines Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

D.J. Battaglia^{1*}, S.M. Kaye², R. Maingi¹, C.S. Chang³, G.-Y. Park³ and the NSTX Team

- ¹ Oak Ridge National Laboratory, Oak Ridge, TN
- ² Princeton Plasma Physics Laboratory, Princeton, NJ
- ³ New York University, New York, NY
- * Participant in the U.S. DOE Fusion Energy Postdoctoral Research Program administered by ORISE & ORAU

2010 NSTX Results and Theory Review November 30, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

XP1029: Examine the dependence of P_{LH} on R_X

- With the same TF coil current ...
 - Match inboard B_t (i.e., inner gap)
 - Match outboard |B| (i.e., outer gap and I_p)
 - Match B_{t0} (same R_0)
- Try to match other P_{LH} variables . . .
 - Line-averaged density
 - X-point height
 - Plasma surface area
 - HFS and LFS neutral fueling
 - Transition with P_{OH} & dW/dt nearly constant
- Scan R_x
 - Low triangularity: $R_x = 0.64$ ($\delta_L = 0.36$)
 - High triangularity: $R_x = 0.47$ ($\delta_L = 0.64$)
 - B_{tX} ratio (low- δ_L / high- δ_L) = 0.73

High-δ shape requires more NBI power than low-δ shape to achieve H-mode

2010 NSTX Research Review XP1029

3

LH transitions occur during periods of steady P_{OH} and dW/dt

WNSTX

2010 NSTX Research Review XP1029

Nov 30 – Dec 2, 2010

4

P_{LH} is similar for both shapes when B_{tX} is matched

- TF current reduced for high- δ shape to match B_{tx}
 - P_{LH} very similar to low- δ shape
- Dataset implies $P_{LH} \sim B_{tX}^{1.0-2.0}$
 - 22% 27% reduction in B_{tx} gives ...
 - 22% 45% reduction in P_{LH}

B _{t0} (T)	R _x (m)	B _{tx} (T)	P _{NBI} (MW)	P _{LH} (MW)
0.55	0.47	0.86	1.9	1.1
0.55	0.64	0.63	1.0	0.7
0.40	0.47	0.63	1.0	0.6

P_{LH} for both shapes strongly influenced by edge fueling and pumping

- Full TRANSP analysis of six discharges
 - Matched B_t , I_p , Z_X
 - Nearly matched n_{el}
 - Required more fueling for high Li shots
- Change in edge fueling has a large effect on P_{LH}
 - 20% 40% change with geometry vs
 30% 40% change with edge fueling

P_{LH} vs B_{tx} experiment ran both shapes over a wide range of fueling and pumping conditions

- P_{LH} trends higher with line-integrated density
 - Qualitatively agrees with ITPA scaling
 - Yet, P_{loss} varies over a factor 3 at $n_{el} \sim 3 \times 10^{15} \text{ m}^{-2}$
- Future analysis: focus on scaling with edge parameters

Preliminary observation: P_{LH} scales linearly with initial divertor D_{α} intensity

× LH	300 mg lithium inter-shot
× L	(High pumping, high fueling)
□ LH	50 mg lithium inter-shot
□ L	(Med. pumping, med. fueling)
O LH	No lithium inter-shot (Low pumping, low \rightarrow med. fueling)

- P_{LH} increases with pre-NBI divertor D_{α} signal
 - May be proportional to initial edge neutral density (n_N)
- Indicates n_N is important in P_{LH} calculations
 - NBI heating efficiency depends on n_N
 - Neutrals impact LH trigger (ion neutral collisions)

XP1029 Summary

- P_{LH} observed to scale with B_{tX}
 - Consistent with XGC0 calculations that link the ion loss at the X-point to the ${\sf E}_{\sf r}$ well depth
 - May contribute to the scaling of P_{LH} with B_t seen in all toroidal devices
 - ST geometry can decouple B_{tX} from B_{t0} through small changes in R_X
- P_{LH} measured over a range of fueling and pumping conditions
 - Initial observation: P_{LH} scales linearly with the pre-beam divertor D_{α}
 - Lithium coatings are a powerful tool for altering edge fueling & P_{LH}
- Future work
 - XGC0 calculations of E_r in L-mode for both shapes
 - TRANSP calculations of full dataset
 - Use dataset to consider critical local variables for LH transition

XP1036: P_{LH} vs ionic species

- Deuterium: $P_{RF} \sim 600 \text{ kW}$ for LH transition with 180° phasing
 - 3 L-mode shots at 450 and 560 kW
 - 5 LH transitions at 625 and 700 kW
 - Locked mode about 50ms after flattop
 - Used combo of HFS and LFS fueling
 - P_{LH} higher with only LFS fueling
- Helium: No LH transition observed
 - Started with discharge that transitioned at 1.5 MW early in run
 - Tried up to 2 MW of RF with only LFS fueling
 - Tried up to 1.2 MW of RF with HFS D_2 and LFS He
 - Tried a number of tricks to lower P_{LH} to no avail

Ion loss mechanisms at the X-point depend on R_x

- Orbit losses
 - Ion gyro-orbit (ion loss decreases with $B_T \sim 1/R_X$)
- Grad-B drift
 - Low v_{II} ions have slow poloidal procession
 - Ions can grad-B drift out of plasma

$$v_{\parallel} B_p \big/ B_T < v_{\nabla B}$$

- More complex relation to R_X
 - Smaller $R_X \rightarrow \text{smaller } B_p/B_T$
 - But fewer low energy ions due to banana orbits
- Used to describe DIII-D dependence of P_{LH} on R_X
 - C.S. Chang, S. Kue, H. Weitzner, PoP 9 (2002)

Z(m)

Edge E_r develops in response to ion losses at X-point

Profiles indicate that the scaling with divertor D_{α} is not solely an effect of changes to the NBI efficiency

- L-mode profiles matched before NBI, but not during
 - Expect profiles to be similar if P_{abs} was the same despite different P_{NBI}

Dependence of P_{LH} with I_p and B_t is well documented for toroidal devices

- ITER-like ITPA database scaling
 - Near-linear scaling with B_t
 - No significant scaling with I_p

 $P_{LH} = 0.0488 n_{e20}^{0.717} B_t^{0.803} S^{0.941}$ [1]

- Low-A devices exhibit I_p scaling
 - $B_{\theta} \sim B_{t}$ at outboard midplane at low-A
 - May imply P_{LH} scales with |B| at outboard midplane

$$P_{LH} = 0.072 n_{e20}^{0.7} B_{out}^{0.7} S^{0.9}$$
 [2]

1 Y.R. Martin et. al., *J. Phys.: Conf. Ser.* **123** (2008) 012033 2 T. Takizuka et. al., *PPCF* **46** (2004) A227 $\begin{aligned} \mathbf{P}_{\mathsf{LH}} &= \mathbf{P}_{\mathsf{OH}} + \mathbf{P}_{\mathsf{abs}} - \mathsf{dW}/\mathsf{dt} - \mathbf{P}_{\mathsf{floss}} \\ \\ \mathbf{P}_{\mathsf{OH}} &: \text{Ohmic heating power} \\ \\ \mathbf{P}_{\mathsf{abs}} &: \text{Absorbed heating power} \\ \\ \mathsf{dW}/\mathsf{dt} &: \text{Change in plasma stored energy} \\ \\ \mathbf{P}_{\mathsf{floss}} &: \text{Power lost by fast ions} \end{aligned}$

P_{LH}: Minimum loss power needed for LH transition
n_{e20}: Line-averaged density (10²⁰ m⁻³)
B_t: On-axis toroidal magnetic field (T)
S: Plasma surface area (m²)
B_{out}: Mag field at outboard midplane

15

I_p and B_t scaling of P_{LH} may be described by their relationship to the edge shearing rate and E_r

- Hypothesis: LH transition at a critical E_r x B shearing rate
 - E_r x B shear rate increases prior to the formation of a pedestal
 - Shearing exceeds a critical value

$$\omega_{ExB} = \frac{\left(RB_{\theta}\right)^{2}}{B} \left(\frac{\partial}{\partial\psi}\right) \frac{E_{r}}{RB_{\theta}}$$

- \rightarrow suppresses turbulence \rightarrow triggers a positive feedback loop
- From force balance: $E_r = v_\theta B_\phi + v_\phi B_\theta \nabla (n_i T_i) / Z_i e n_i$
 - NSTX measurements: core $E_r \sim v_{\phi} B_{\theta}$, edge $E_r \sim \nabla P_i / Z_i n_i$
 - Edge pressure gradient related to power lost across separatrix
 - XGC-0 calculations: edge n_i and $\,\nabla\,n_i$ influenced by ion orbit losses
 - Result: magnetic geometries that enhance ion orbit losses require smaller edge pressure gradients to trigger LH transition

Equations from: K.H. Burrell, *Phys. Plasmas*, **4** (1997) 1499

Acknowledgement

This research was funded by the U.S. Department of Energy, contract numbers DE-AC05-00OR22725 (ORNL) and DE-AC02-09CH11466 (PPPL). D.J. Battaglia is supported under an appointment to the U.S. Department of Energy (DOE) Fusion Energy Postdoctoral Research Program administered by the Oak Ridge Institute for Science and Education under contract number DE-AC05-06OR23100 between the U.S. Department of Energy and Oak Ridge Associated Universities.

