

Supported by

Microtearing simulations in support of NSTX measurements

College W&M Colorado Sch Mines Columbia U CompX **General Atomics** INFI Johns Hopkins U LANL LLNL I odestar MIT Nova Photonics New York U **Old Dominion U** ORNL **PPPL** PSI Princeton U Purdue U SNL Think Tank. Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Walter Guttenfelder¹, S.M. Kaye¹, F.M. Poli¹, Y. Ren¹, J. Candy², R.E. Bell¹, B.P. LeBlanc¹, G.W. Hammett¹, D.R. Mikkelsen¹, H. Yuh³, W.M. Nevins⁴, E. Wang⁴

> ¹PPPL, USA ²General Atomics, USA ³Nova Photonics Inc., USA ⁴LLNL, USA

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP**, Garching ASCR, Czech Rep **U** Quebec

Analyzing experimental discharges using gyrokinetic simulations (with GYRO*)

- Motivated by confinement scaling (Bτ_E~ν*^{-0.95}) in 2006 NSTX discharges (Kaye et al. 2007 PRL, NF)
 - Physical origin unclear, could influence design of next-generation device at low v_*
- Microtearing unstable in high v_* discharge (120968, 0.7 MA, 0.35 T, 4 MW, no Li)
 - Scaling of linear growth rates $\gamma_{lin} \sim v_e$, consistent with XP trend
- \Rightarrow First <u>non-linear</u> microtearing simulations in NSTX
 - Significant transport predicted, sensitive to E×B shear
 - Narrow density perturbations $(k_r > k_{\theta})$, potentially "observable" with high-k scattering
- Beginning to apply synthetic diagnostic to both microtearing and ETG simulations for comparison with high-k measurements (see APS posters by F.M. Poli & Y. Ren)

*J. Candy & R.E. Waltz, Phys. Rev. Lett 91, 045001 (2003); J. Comp. Physics 186, 545 (2003); https://fusion.gat.com/theory/Gyro

Linear microtearing instability

- High-m tearing mode around a rational q(r₀)=m/n surface (k_{||}(r₀)=0) (Classical tearing mode stable for large m, ∆'≈-2m/r<0)
- Driven by ∇T_e with^{*} (i) parallel thermal force or (ii) trapped-passing boundary effects ⇒ requires collisionality

Conceptual linear picture

• Imagine helically resonant (q=m/n) δB_r perturbation

- $\delta B_r \sim \cos(m\theta n\phi)$
- $\delta B_{r} \text{ leads to radially perturbed field line, finite island width} \qquad w = 4 \left(\frac{\delta B_{r}}{B} \frac{rR}{n\hat{s}}\right)^{1/2}$ $\nabla T_{e} \text{ projected onto field line gives parallel gradient} \qquad \nabla_{\parallel} T_{e0} = \frac{\vec{B} \cdot \nabla T_{e0}}{R} = \frac{\delta B_{r}}{R} \nabla T_{e0}$
- Parallel thermal force $(R_{T\parallel} \approx -n_e \nabla_{\parallel} T_e)$ drives parallel electron current that reinforces $\delta B_r \rightarrow instability$
- Requires sufficient ∇T_e , β , v_e , and positive magnetic shear (dq/dr)

*e.g. Drake & Lee, Phys. Fluids 20, 1341 (1977); Catto & Rosenbluth, Phys. Fluids 24, 1655 (1981); Connor, Cowley & Hastie, PPCF 32, 799 (1990)

Microtearing modes unstable in high v_* discharge 120968

- Microtearing dominates $k_{\theta}\rho_s < 1$ in outer half-radius (r/a=0.5-0.8)
 - Resonant tearing parity in A_{\parallel} (δB_r =-ik_{θ} A_{\parallel})
 - Extended potential eigenfunctions in ballooning space
 - Real frequencies in electron diamagnetic direction, $\omega \approx \omega_{*e} = (k_{\theta}\rho_s) \cdot (a/L_n + a/L_{Te}) \cdot (c_s/a)$
- ETG becomes unstable at outermost locations (r/a=0.7-0.8, not shown)

Microtearing instability exhibits thresholds in electron temperature gradient, collisionality and beta

- (1) Apparent threshold in ∇T_e , $(a/L_{Te})_{crit} \approx 1.3-1.5$ $(a/L_{Te,exp}=2.7)$
- (2) Growth rates decrease with $v_e < v_{e,exp}$ (consistent with experimental v_* scan)
 - Scaling with v_e not simply monotonic transition to TEM at very low v_e
- (3) Lowering beta stabilizes microtearing
 - KBM becomes unstable at much larger β_e (not shown)

Nonlinear microtearing transport comparable to experimental transport

- With <u>no</u> E×B shear predicted transport (1.2 $\rho_s^2 c_s/a$) comparable to experimental transport (1.0-1.6 $\rho_s^2 c_s/a$)
- Transport reduced when increasing γ_E to local experimental value

- Simulations are underway to investigate sensitivity to a/L_{Te} , β_e , ν_e
- Above are local simulations, but $\rho_s/a=0.08$ & physical domain r/a=0.3-0.9 \rightarrow have not investigated influence of profile variations, e.g. a/L_{Te}(r), $\gamma_E(r)$, q(r)

97% of transport in non-linear simulation due to electromagnetic contribution

- $w_{island}(n) > \Delta r_{rat}(n)$, island overlap \rightarrow perturbed field line trajectories are stochastic
- $\chi_{e,EM}$ well described by *collisionless* Rechester-Rosenbluth (λ_{mfp} =25 m, L_c=2.5 m)^{*} f_n≈50% passing particles
 - \rightarrow APS invited talk by Eric Wang (submitted to Phys. Plasmas)

* A.B. Rechester & M.N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978); R.W. Harvey et al., Phys. Rev. Lett. 47, 102 (1981).

Nonlinear simulations exhibit narrow density & broad EM perturbations

- Narrow radial n, ϕ , $j_{||}$ structures need to be resolved but $A_{||}$ very broad = expensive
- $\delta B_r/B \sim 8.7 \times 10^{-4} \sim \rho_e/L_{Te} = 3.4 \times 10^{-4}$
 - $\delta B_{r}/B \sim \rho_{e}/L_{Te}$ analytic approximation from Drake et al. PRL 1980; used for NSTX in Wong et al. PRL 2007

 $\delta T_e/T_e \approx 2\%$ $\delta V_{e,||}/C_s \approx 6\%$

May expect significant intensity in high-k scattering from microtearing

- Comparable $\delta n/n$ predicted for ETG (2.8×10⁻³) and microtearing (1.7×10⁻³)
- But ETG spectrum much broader in $k_{\theta}\rho_s \rightarrow less$ intensity per unit $\Delta k_x \cdot \Delta k_y$
- Application of synthetic "high-k" diagnostic beginning (see talks & APS posters by F.M. Poli & Y. Ren)

BACKUP SLIDES

Dimensionless v^* scans – basis of microstability analysis

() NSTX

FY10 Results and Theory Review (Guttenfelder)

Experimental profiles of dimensionless parameters

Factor ~5 variation in v_* , additional (non-ideal) variation in other dimensionless parameters

The following simulations are based on high v_* NSTX discharge 120968 (mostly r/a=0.6) Calculations were also performed for MAST discharges with similar results (not shown)

Linear mode structure in perpendicular (r, α) plane illustrates microtearing mode dynamics

- Narrow resonant current channel ($\approx 0.3 \rho_s$) centered on rational surface
- "Constant ψ " (A_{II}), resonant tearing parity
- Nearly unmagnetized/adiabatic ion response $\Rightarrow \frac{\tilde{n}}{n_0} \approx -\left(\frac{e\tilde{\varphi}}{T_i}\right)$
- Narrow potential, density, T_e perturbations

() NSTX

FY10 Results and Theory Review (Guttenfelder)

Nov. 30-Dec. 2, 2010

field line label

Linear mode structure in toroidal (R,Z) plane

- Nonuniform poloidal structure (comparing inboard and outboard perturbations)
- Density perturbations radially narrow, extended vertically on outboard side
- \Rightarrow "High-k" scattering diagnostic well suited for k_r >> k_{θ}

Field line integration used to map island

- δB_r in linear run (arbitrary) determines $w_{island} \sim 0.4 \rho_s$
- Slab/cylindrical island width estimate does not work well (δB_r strongly ballooning)

$$\frac{\delta B_{r,mn}}{B} = 1.8 \cdot 10^{-7}$$
$$w = 4 \cdot \left[\frac{\delta B_{r,mn}}{B} \frac{rR}{n\hat{s}} \right]^{1/2} = 0.03\rho_s$$

• Estimate using rms δB_r gets closer

$$\left| \left\langle \frac{\delta B_{r}^{2}}{B^{2}} \right\rangle_{\alpha,\theta} \right|^{1/2} = 2.5 \cdot 10^{-5}$$
$$w = 4 \cdot \left[\left(\frac{\delta B_{r}}{B} \right)_{rms} \frac{rR}{n\hat{s}} \right]^{1/2} = 0.39\rho_{s}$$

- $w_{island}/L_{Te} \approx 8.10^{-3}$ but max($\delta T_e/T_e$) $\approx 4.5.10^{-4}$
- ⇒ Influence of perpendicular drift dynamics

Fine radial resolution required to capture *linear* resonant layers

- Calculating linear growth rate for single mode ($k_{\theta}\rho_s$ =0.63, n=30) using box width and resolution of nonlinear simulations
- L_x=80 ρ_s , Δx =0.4 & 0.2 ρ_s
- (1) $\Delta x=0.4 \rho_s$ is barely small enough to distinguish resonant layers
- (2) $\Delta x=0.2 \rho_s$ resembles the...
- (3) high resolution flux-tube case

FY10 Results and Theory Review (Guttenfelder)

Fine radial resolution required for resolved nonlinear spectra

- k_x spectra completely different for $\Delta x=0.4 \rightarrow 0.2\rho_s$
- Insufficient resolution leads to peaking at high k_x similar to GS2 simulations in Applegate Ph.D. thesis (2007, Imperial College London)

NSTX

FY10 Results and Theory Review (Guttenfelder)