

Study of Parametric Dependence of High-k Turbulence on NSTX

College W&M **Colorado Sch Mines** Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Y. Ren¹ S.M. Kaye¹, E. Mazzucato¹, W. Guttenfelder¹, W. Wang¹, K.C. Lee², C.W. Domier², N.C. Luhmann, Jr.² 1. PPPL 2. U.C. Davis

2010 NSTX Results and Theory Review November 30th, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U **loffe Inst RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Outline

- High-k turbulence has collisionality dependence (XP 1037)
 - Factor of three change in collisionality achieved
 - Local $\rho_e,\,\beta_e$, n_e and q kept approximately constant
 - Turbulence spectral power decreased as collisionality increases.
- Steep density gradient has been observed to stabilize electron-scale (high-k) turbulence.
 - Large density gradient increase induced by an ELM event
 - Density gradient stabilization most effective on longer wavelength modes ($k_\perp \rho_s \lesssim 10\,$)

A Factor-of-Three Local Collisionality Scan Achieved

- Time points chosen so that $T_e \propto B^2$ was well maintained from R=130-145 cm: local v_{e*} was varied with constant ρ_e and β_e .
- I_p and B_T were varied with a constant ratio to keep constant q.
- Neutral beam power was adjusted to have a better match in T_e profile.
- The scan was carried out with (I_p(MA), B_T (kG))=(0.7,3.5), (0.9,4.5) and (1.1,5.5).
- (1.1 MA, 5.5 kG) shots have much high density and Z_{eff} and are not used.
- Factor of three change in v_{e*} is achieved.
- ρ_s , n_e and q have only small variations against v_{e^*} .

High-k Turbulence Power Seems to Increase as ve*

Decreases

- T_e gradient variations are up to 30%.
- Variation in magnetic shear is larger, up to 90%.
- Variation in ExB shearing rate can be up to factor of two.

- High-k turbulence power appears to increase as v_{e*} decreases at k_⊥ρ_s >9.
- The same relationship may hold for k_⊥ρ_s <9 if ExB shearing stabilization is taken into account.
- Larger variation in v_{e^*} and 2D k spectrum will be important to pin down the relationship

ETG Turbulence Linearly Unstable in All These Discharges

- Stability Analysis was performed with the GS2 code (Kotschenreuther et al., 1995)
- Maximum ETG growth rates are higher for the lower collisionality cases with the same trend as wavenumber spectral power.
- Nonlinear simulations will be conducted.

Large Density Gradient Induced by an ELM Event

- After the ELM event:
 - Large density gradient developed in the high-k measurement region.
 - Electron temperature gradient also increases.
 - Electron density has only a moderate decrease.
 - Electron temperature remains essentially constant.

No large MHD mode appears before and right after the ELM event.

The Spectral Power of Modes at Smaller Wavenumber is Significantly Reduced

- Significant decrease in wavenumber spectral power is observed for modes with longer wavelength, $k_{\perp}\rho_s \lesssim 10$.
- The spectral power of the large wavenumbers, $k_{\perp}\rho_s \gtrsim 15$, is unaffected.
 - The decrease in scattered signals after the ELM event in those channels mainly come from the fact that they measure larger wavenumbers.
- Simultaneous operation of all five channels is essential to this observation.

Summary

- High-k turbulence has collisionality dependence and the measured spectral power decreases as collisonality increases with the same trend as in linear growth rate.
- Stabilization effect of large density gradient induced by an ELM event and simultaneous confinement improvement have been observed
 - Significantly reduction of high-k fluctuations at smaller k_{\perp} , $k_{\perp}\rho_s \lesssim 10$, and spectral power at large k_{\perp} , $k_{\perp}\rho_s \gtrsim 15$, is not affected.
 - Linear stability analysis demonstration of the stabilization effect of large density gradient

Backup slides

Other Important Equilibrium Quantities Have Small Changes After the ELM Event

- The normalized density gradient (by last closed flux surface minor radius) has a factor of 5 increase after the ELM event.
- The normalized T_e gradient increases by about 60% and the normalized T_i gradient decreased by about 60%.
- The ion temperature has a 40% increase.
- All other quantities have change no more than 25%.

Linear Stability Analysis Showing the Stabilization of ETG Modes After the ELM Event

 $\square a/L_{T_e} \text{ measured} \\ \bigstar (a/L_{T_e})_{critic} \text{ by GS2}$

- Before the ELM, ETG is largely unstable.
- Stability Analysis was performed with the GS2 code (Kotschenreuther et al., 1995)

- After the ELM, ETG is largely stable.
- With manually decreased a/L_{n_e} , ETG is largely unstable again.

Plasma Confinement Improved after the ELM Event

- Plasma thermal diffusivity is decreased by about a factor of 2 after the ELM event.
 - Large density and higher ion temperature leads to strong coupling between electron and ions.
 - One-fluid effective thermal diffusivity is ued to show the confinement improvement.

 This increase correlates well with the decrease of the spectral power of the longer wavelength modes.