

Supported by

ted by U.S. DEPARTMENT OF Office of Science

Synthetic diagnostics for NSTX simulations

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U **SNL** Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Marvland **U** Rochester **U** Washington **U** Wisconsin

Francesca Poli

S. Ethier, W. Guttenfelder, TS Hahm, S. Kaye, E. Mazzucato, Y. Ren, D. Smith, W. Wang and the NSTX Research Team

November, 30th, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

General (and basic) structure of a synthetic diagnostic

- modular structure
- should be transportable to different numerical codes and adaptable to other diagnostics

The synthetic high-k aims at reproducing the real diagnostic

High-k scattering measures $\{k_{\perp}\}$

$$\vec{k} = \vec{k}_s - \vec{k}_i$$

 $\omega_i >> \omega$ => Small θ_s

$$k = 2k_i \sin(\theta_s/2)$$

$$\mathbf{E}_{i}(\mathbf{r},t) = \mathbf{E}_{i}(\mathbf{r}_{\perp}) e^{i(\mathbf{k}_{i} \cdot \mathbf{r} - \omega_{i}t)}$$

Fourier Transform of density fluctuations weighted by the beam intensity

$$\mathbf{E}_{s}(v_{s}) = \frac{r_{e}}{x} e^{i\mathbf{k}_{s} \cdot \mathbf{x}} (\hat{s}\hat{s} - \mathbf{1}) \int_{T'}^{T'}$$

Direction & amplitude of *k*_s

$$dt' \int_{V} d^{3}r' \mathbf{E}_{i}(\mathbf{r}_{\perp}) e^{i(\omega t' - \mathbf{k} \cdot \mathbf{r})} \tilde{n}(\mathbf{r}', t')$$

Amplitude profile of beam (size of the scattering volume)

Present status of the synthetic high-k

φ (rad)

NSTX

 $k_r \rho_s$

The spectral slope is mainly affected by 2 effects

Geometrical effects

in the collection efficiency

Some contribution to the spectrum slope comes from the experimental setup

The size of the scattering volume

Geometrical effects are not sufficient to reproduce measurements

Experiments

Simulations

Future directions and timescales

- 1. Benchmark of the synthetic high-k
 - Option 1: energy calibration => not feasible in the short time scale
 - Option 2: design an alternate simple experiment
 - Option 3: simulate a calibration experiment
- 2. Code verification and validation against experiments
 - Given: the high-k measures in a range of (kr,kq) where ETG spectra are maybe not significant and other instabilities can play a role
 - Can we identify a set of experiments for V&V (it would be useful to have high-k combined with other turbulence diagnostics) ?
- 3. Can we use these same simulations to predict the optimal layout for the second-generation high-k?

BACKUP SLIDES

A direct comparison may lead to fortuitous agreement

Level of fluctuations is similar, but spectra are steeper in L-mode

Interface with GTS*: spectra are computed in real coordinates

[* WX Wang et al, Phys. Plasmas 13 092505 (2006)]

Simulation using:

- numerical equilibrium
- experimental parameters
- electrostatic
- adiabatic ions

 (ρ, θ) grid not regular

- $\Delta\rho$, $\Delta\theta$ are set by Larmor radius ρ_e
- $\Delta \theta$ is regular on each flux surface, it changes between flux surfaces

64 planes: toroidal separation comparable to scattering volume extension => each plane is dealt with independently

Compute spectra in real coordinates => *k* directly compared with exps

Interface with GYRO*: spectra are computed in flux coordinates

[* J. Candy and R. Waltz, Journal Comp. Physics, 186-545 (2003)]

1.4

Local simulation using:

- numerical equilibrium
- experimental parameters
- finite collisionality
- toroidal flow and flow shear
- electrostatic (β_e is small)
- adiabatic ions (will ultimately use kinetic)

 (ρ, θ) grid regular => compute spectra in flux coordinates

Periodicity along toroidal direction => need only a finite number of planes (50 for this simulation)

=> need to convert k to physical units to compare with experiments

Interface with GTS: k_{θ} spectra are computed in real space along a pseudo-polar direction

1. Along each flux surface in real space (R,z) we construct a trajectory :

$$ds_{j} = \sqrt{(R_{j+1} - R_{j})^{2} + (z_{j+1} - z_{j})^{2}}$$

- 2. Interpolate density along this trajectory using the same step for all flux surface (to have the same k_N)
- 3. Compute Fourier Transform using the same number of points (to have the same Δk_{θ})
- => The Fourier components depend only on the value of R at midplane $\tilde{n}(R_{mid}, k_{\theta}, t_{i})$

PROBLEM: in order to compute the transform along R, we need to interpolate amplitude and phase of Fourier components

Interface with GTS: density fluctuations are interpolated in flux coordinates

phase interpolation generates artificial structures in k_r, due to phase jumps where density structures are localized.

This issue can be overcome by pre-processing density fluctuations in flux coordinates

- ••• interpolate along $\rho =>$ uniform $\Delta R @$ midplane
- ••• redistribute data along θ

$$\begin{cases} \frac{d\mathbf{x}}{dt} = -\frac{\partial D/\partial \mathbf{k}'}{\partial D/\partial \omega} \\ \frac{d\mathbf{k}'}{dt} = \frac{\partial D/\partial \mathbf{x}}{\partial D/\partial \omega} \end{cases}$$
Ray tracing equations
Solved in cylindrical geometry (R, φ ,z), assuming an equal (and small) time step for all rays
$$D(\mathbf{x}, \mathbf{k}', \omega) = (k')^2 - \left(\frac{\omega}{c}\right)^2 [n^2 + (\nabla I)^2] = 0$$
Dispersion relation (Hartree-Fock)

NSTX

Block 1: Beam tracing*

* [Nowak and Orefice, Phys. Plasmas 1 1242 (1994)]

[Fig.2 from Nowak and Orefice, Phys. Plasmas 1 1242 (1994)]

$$\frac{d(\nabla I)^{2}}{ds_{i}} = \frac{\left[\nabla I(P_{i})\right]^{2} - \left[\nabla I(P)\right]^{2}}{ds_{i}} = \frac{1}{ds_{i}} \left(d\varphi_{i}\frac{\partial}{\partial\varphi} + dR_{i}\frac{\partial}{\partial R} + dz_{i}\frac{\partial}{\partial z}\right) (\nabla I)^{2}$$
$$\left|\nabla I(P_{j,k}')\right| = \left|\frac{1}{\sin\gamma(P_{j,k})}\frac{\partial I(P_{j,k}')}{\partial s'}\right| \qquad \frac{\partial I(P_{j,k}')}{\partial s'} = \frac{\Delta s}{\Delta s'}\frac{\partial I(P_{j,k})}{\partial s}$$

Negligible distortion of the wave front at the location of # 124901 scattering

1.5

1

0.5

0

-0.5

-1

-1.5

0.14

0.12

0.1

0.08

0.06

0.04

(m) z

-2

۲ (m)

SB

 $(2)_{1}$

PB

-1

X (m)

-1.3 -1.28 -1.26 -1.24 -1.22 -1.2 R (m)

0

(1)

(2)

(3)

 No appreciable spreading of the beam at the location of scattering (2) (high frequency beam)
 => Gaussian function used as a weighting function for density fluctuations on the poloidal plane

$$\int_{T'} dt' \int_{V} d^{3}r' \mathbf{E}_{i}(\mathbf{r}_{\perp}) e^{i(\omega t' - \mathbf{k} \cdot \mathbf{r})} \tilde{n}(\mathbf{r}', t')$$

⇒ full beam equations not necessary for the propagation and distortion of the beam, but important for the reconstruction of the 3D Instrumental Selectivity Function and of the filtering function (k_r, k_θ) for the simulated spectra

The collection efficiency is optimized at tangent injection

[E. Mazzucato, Phys. Plasmas 10 753 (2003)]

$$F = \exp(-\alpha^2 / \alpha_0^2) \qquad \alpha_0 = 2 / k_i \alpha$$

$$\alpha^2 \approx (\theta_2 - \theta_1)^2 + 4\theta_2 \theta_1 \sin^2(\delta \varphi/2)$$

The collection efficiency depends on:

- the scattering angle
- direction of the magnetic field
 Max efficiency for scattering along the detector line sight and for tangent injection.

The scattering volume is highly localized in the toroidal direction

- 1. take a toroidal length $L = \frac{2a}{\sin(\theta_s)}$
- 2. Compute the collection efficiency for all k_i, θ_s within this volume
- $_{\text{R (m)}}$ The Instrumental Selectivity Function (ISF) is highly localized in φ
 - The resolution in (R,z) is affected by the alignment of incident and scattered beam

=> Use a function for the receiving window

NEXT STEP UPGRADE :

use the 3D extension of the scattering volume for the computation of spectra. Include in the interface for both GTS and GYRO

The collection efficiency is used to reconstruct a (k_r, k_θ) filter for the simulation spectra

Simulations must reach stationary phase for a meaningful comparison with experiments

From GTS simulations

2010 NSTX Results and Theory Review, F Poli, Nov. 30th

Frequency spectra are broader in experiments

#124901

- Peaking frequency is comparable when a Doppler shift of 500 kHz is taken into account (from rotation measurements)
- Simulated spectra are much narrower than measured spectra (left)
- Better match when ∇T_e is increased by 20% and using an 'anti-relaxation' algorithm to maintain the gradient drive (below)

2010 NSTX Results and Theory Review, F Poli, Nov. 30th

Spectral index less steep than in experiments also in L-mode

- Level of fluctuations appears to be statistically steady
- The ISF does not affect significantly the spectral slope
- the ISF cannot reproduce the dramatic decrease in amplitude at the lowest k
- Predicted ETG transport much smaller than experiment, may not be the dominant mechanism in this L-mode discharge

