Whole Device 3D
 Full-Wave Modeling of HHFW on NSTX

D L Green, LA Berry, E F Jaeger + the RF-SciDAC Team

Extend AORSA to solve in the edge region

- Most hot plasma full-wave codes are spectral in the parallel direction to capture the non-local parallel response.
- To capture an all-orders high harmonic perpendicular plasma response AORSA is also spectral in the perpendicular direction.
- AORSA does not see open or closed field lines.
- We can now solve for an arbitrary 2D boundary and profiles. In general some modification to rlim/
 zlim from g-eqdsk.

2D profiles are created from fits to data

- Inside the last closed flux surface (LFCS) profiles are ID flux functions.
- 2D numerical profiles are generated using
- Fits to Multi-Point Thomson Scattering (MPTS) data with exponential decay with distance from LCFS
- SOLPS transport modeling helps with estimating the 2D scrapeoff profiles [Thanks to John Canik]
- Edge collisional damping factor is somewhat arbitrary and used to control coaxial mode amplitude.

Density profile

Fast-wave onset location varies with launched toroidal mode number

2D NSTX Results

- Shot nPhi $=22 \quad n P h i=13 \quad n P h i=5$
- Shot \#120742, 120740 \& 120745 from Hosea et al.,

PoP 15, 056104 (2008)

- $\mathrm{He}, 30 \mathrm{MHz}$

- Cavity modes between the wall and plasma for small nPhi where the fast wave is propagative.
- Edge localized, field-aligned traveling eigenmodes for negative toroidal modes caused by tangential reflection of the fast-wave inside the density gradient and fast-wave cutoff.

3D NSTX Results

Core fast-wave
Coaxial edge mode

3D NSTX Results II

-90 degree phasing, Phillips et al., Nuclear Fusion 49, 075015 (2009)

Correlation (if any) between this images is unclear.

