The Finite-Orbit-Width (FOW) CQL3D Code Upgrade

Yu. Petrov, R.W. Harvey
CompX, Del Mar, CA

CQL3D Fokker-Planck System

Input:

- EQDSK equilibrium B field
- Time-dependent radial plasma profiles

Coupling to:

- SWIM IPS
- TRANSP
- GENRAY
- AORSA
- TORIC
- DC

CQL3D

- Bounce-Average $f_{e, i}\left(u_{0}, \theta_{0}, \rho, t\right)$
- Multi-species
- Fully 3D implicit
- Transport

Features:

Diagnostics:

- Pwr and current radial profiles
- Line-integrated Bremsstrahlung
- Neutral particle diagnostics
- Soft X-ray
- EC emission spectra
- Neutron rates
- Fusion energy reaction rates
- Bootstrap current
- Toroidal DC electric field
- Large-angle e-collisions (giving knock-on elec source)
- Full nonlinear relativistic collision coeffs.
- Monte-Carlo NFREYA neutral beam source
- Loss regions in \mathbf{u}_{0}-space:

Prompt banana losses \& Ripple losses

- Radial diffusion and pinch; (u_{0}, θ_{0}, ρ)-dependence
- Up-down non-symmetrical equilibrium capability

Bounce－Average FP Equations $\quad\left(\tau_{\mathrm{B}} \ll \tau_{\text {coll }}\right)$

The gyro＋bounce averaged FP－transport equation for the electron or ion distribution functions f_{0} evaluated at the minimum magnetic field point on a flux surface：

$$
\frac{\partial}{\partial t}\left(\lambda f_{0}\right)=\nabla_{\mathbf{u}_{0}} \cdot \Gamma_{\mathbf{u}_{0}}+\left\langle\left\langle R\left(f_{0}\right)\right\rangle\right\rangle+\langle\langle S\rangle\rangle
$$

$$
\nabla_{\mathrm{u}_{0}} \cdot \Gamma_{\mathbf{u}_{0}}=C\left(f_{0}\right)+Q\left(f_{0}\right)+E\left(f_{0}\right)+H\left(f_{0}\right)
$$

《／．．》〉 is gyro／tor．angle／bounce average
－Presently uses Zero－Orbit－Width（ZOW） approximation with COM：
－$\rho=\rho_{0}$（Flux surface）
－$u=u_{0}$（Energy）
－$\mu=\mu_{0}$（Adiabatic invariant）$\Rightarrow \sin ^{2} \theta=[B(s) / B(s=0)] \sin ^{2} \theta_{0}$（where $\sin \theta=u_{\perp} / u$ ）
The local（ s ）quantities on a flux surface are related to the midplane（ $s=0$ ）quantities through the COM－ZOW．$\quad f_{0}(\mathrm{COM}) \equiv f_{0}\left(u_{0}, \theta_{0}, \rho\right)=f(u, \theta, \rho, s)$
－No coupling of u_{0}, θ_{0} to ρ ，except through phenomenological $\left\langle R\left(f_{0}\right)\right\rangle$ ．
The quantity $\lambda=\left|u_{| |}\right| \tau_{\mathrm{B}}$ ，when multiplied by f_{0} ，comes from the bounce－averaging process and gives the number of particles per unit cross－section area of a flux tube， and per $d^{3} \mathbf{u}_{0}$ ．

FOW modification replaces simple ZOW orbits with full guiding center orbits： \Rightarrow（Large orbit）Neoclassical rad transport，accurate losses，accurate distn f ．

$$
\left(\frac{\partial f_{a}(\mathbf{u})}{\partial t}\right)_{C} \equiv C_{a b}\left(f_{a}, f_{b}\right)=\frac{\partial}{\partial \mathbf{u}} \cdot\left[\mathbf{D}_{a b} \cdot \frac{\partial f_{a}(\mathbf{u})}{\partial \mathbf{u}}-\mathbf{F}_{a b} f_{a}(\mathbf{u})\right]
$$

where \mathbf{u} is the momentum per rest mass, and $\mathbf{D}_{a b}$ and $\mathbf{F}_{a b}$ are the diffusion and friction coefficients; $a, b=($ elec,ions),

$$
\begin{aligned}
& \mathbf{D}_{a b}(\mathbf{u})=1 / 2 \Gamma_{a} \Sigma_{b}\left(Z_{b} / Z_{a}\right)^{2} \ln \Lambda_{a b} \int \mathbf{U}\left(\mathbf{u}, \mathbf{u}^{\prime}\right) f_{b}\left(\mathbf{u}^{\prime}\right) d^{3} \mathbf{u}^{\prime} \\
& \mathbf{F}_{a b}(\mathbf{u})=-1 / 2 \Gamma_{a} \Sigma_{b}\left(Z_{b} / Z_{a}\right)^{2}\left(m_{a} / m_{b}\right) \ln \Lambda_{a b} \int\left(\nabla_{\mathbf{u}^{\prime}} \cdot \mathbf{U}\left(\mathbf{U}, \mathbf{u}^{\prime}\right)\right) f_{b}\left(\mathbf{u}^{\prime}\right) d^{3} \mathbf{u}^{\prime}
\end{aligned}
$$

> This is the local form of the collisional operator, which involves local distributions of "main" $\left(f_{a}\right)$ and "secondary" $\left(f_{b}\right)$ species, at each pt on orbit.
> However, in the bounce-average formulation of the Fokker-Plank equation, the distribution function is only known as a function of three Constants of Motion (COM).
> For convenience, we choose the COM to be (R_{0}, u_{0}, θ_{0}) that specify the radial bin on the midplane where the bounce-average distribution is calculated, and the particle momentum and pitch angle at this point.
> This "convenient COM" can be easily linked to the COM triplet (u^{2}, μ, p_{φ}) of energy, magnetic moment and canonical toroidal momentum.

Bounce-averaging procedure in the FOW case:

1.For each R_{0}-bin, "main" orbits are launched on $\left(u_{0}, \theta_{0}\right)$-grid.
2. For each "main" orbit, a set of points is selected on the orbit to be used for bounce-averaging of the collisional operator.
3. From each selected point, the "secondary" orbits are launched on ($u^{\prime}, \theta^{\prime}$)-grid, and traced to the midplane, thus determining the local f_{b} of the "secondary" species from the midplane $f_{b 0}$.

Plot: "Main" orbit (bold) - 29 keV deuteron in NSTX, $\theta=0.65 \mathrm{rad}$; "Secondary" orbits (thin lines), $29 \mathrm{keV}, \theta^{\prime}=0-\pi$, are launched from one selected point (■) and stopped at the equatorial plane.

The integration in $\mathbf{D}_{a b}$ and $\mathbf{F}_{a b}$ is performed over "secondary" orbits. After this procedure is repeated for all selected points on main orbit, the bounce-average collisional operator is found.

Direct orbit tracing - too "pricy" CPU time: 4 flux-surfaces $\times 40$ vel. $\times 60$ pitch angles to launch "main" orbits $\times 20$ points selected on each "main" orbit $\times 40$ vel. $\times 60$ pitch angles for "secondary" orbits $=460,800,000$ orbits $\rightarrow 270 \mathrm{~min}$.

Alternative, CPU-time efficient approach: Make a look-up table for $R_{\text {midplane }}$ that depends on three indices corresponding to $\mathrm{COM}=\left(u, \mu, p_{\varphi}\right)\left[\mu\right.$ and p_{φ} defined over equispaced grids $p_{\varphi}\left(i_{p_{\varphi}}\right), \mu\left(i_{\mu}\right)$]. Use this table for a fast determination of equatorial $R_{0}{ }^{\prime}$ for the "secondary" orbits: At each point (R, Z) on the "main" orbit, and each given ($u^{\prime}, \theta^{\prime}$) for the "secondary" orbit, find $\left(u^{\prime}, \mu^{\prime}, p_{\varphi}{ }^{\prime}\right)$ constants and look up for $\left(R_{0}{ }^{\prime}, \theta_{0}\right.$) in the table.

Construction of the Look-up Table COM $\rightarrow \boldsymbol{R}_{\text {midplane }}, \boldsymbol{\theta}_{\text {midplane }}$

For a given u, plot the levels of $p_{\varphi}=(Z e / m c) \Psi_{p o l}+\left(B_{\varphi} / B\right) R_{0} u_{0} \cos \theta_{0}$ and the levels of $\mu=\left(1-\cos ^{2} \theta_{0}\right) / B \quad$ (normalized adiab. invariant) as a function of $R_{0} \equiv R_{\text {midplane }}$ and $\cos \theta_{0}=\left(u_{\|} \mid u\right)_{0}$, and find all intersections. Done for the grid of $p_{\varphi}\left(i_{p_{q}}\right), \mu\left(i_{\mu}\right)$ values. Similar to [J. Egedal, Nucl.Fus. 40, 1597 (2000)], but here all intersection points are found numerically:

Map COM $\rightarrow R_{\text {midplane }}, \theta_{\text {midplane }}$ for 6.5 keV

The total (80 energy levels) table size is $\left(N_{u}, N_{\mu}, N_{p_{\varphi}}\right)=80 \times 300 \times 300 \times(4$ roots $)$. Total CPU time $=\sim 100 \mathrm{sec} . ;$ calculated once, before time loop starts.
Here, a map is shown for one energy level, with 300×300 intersecting levels in μ and p_{φ}. Levels are not shown, only the intersection points.
Colors indicate different orbit types / number of roots.
Map for $E=6.5 \mathrm{keV}$

The look-up table is used for a fast search of $R_{\text {midplane }}$ for the secondary orbits - shown with dots in the figure, compared to orbits:

The test run with $460,800,000$ orbits (4 flux-surfaces, 40×60 main orbits, 20 selected points on each main orbit, 40×60 secondary orbits) took 1 min (vs. 270 min for orbits).

For refined grid with 32 flux-surfaces, 80 pts per orbit, and $(80 \times 80)^{2}$ velocity-space, projected CPU time will be ~ 4 hours (but can speed up by ~ 100 with inexpensive multi-core Graphics Processing Unit).

The next step in the FOW modification is to calculate the nonlinear ion collision operator, as a generalization of present zero-orbit-width methods in CQL3D.

The target application is analysis of FOW effects in NSTX, giving accurate neocl. transport, accurate orbit losses (incl
 spectra), accurate ion diagnostics (FIDA, NPA), and accurate ion distributions with NBI and full wave AORSA. All are strongly affected by FOW.

