

EBW heating and current drive modeling

<u>J. Urban¹</u>, J. Decker², J. Preinhaelter¹, G. Taylor³, L. Vahala⁴, G. Vahala⁵

¹ EURATOM/IPP.CR Association, Prague, Czech Rep.
 ² EURATOM-CEA, Cadarache, France
 ³ Princeton Plasma Physics Laboratory

⁴ Old Dominion University, Norfolk, VA
⁵ College of William & Mary, Williamsburg, VA

Simulation setup

- AMR (Antenna, Mode-conversion, Ray-tracing) + LUKE (3D Fokker-Planck) codes
 - AMR calculates optimum aiming and EBW ray trajectories
 - LUKE calculates quasi-linear damping and current (assuming 100% coupling)
- O-X-EBW scheme
 - Frequency and antenna vertical position can be chosen
 - $N_{\rm H^2}$, $N_{\rm pol}$ determined $\rightarrow 2 \pm \phi$ injections possible
- Target plasma
 - NSTX L-mode
 - MAST-U H-mode (TRANSP scenario)
 - Z_{eff}=2 for all scenarios
- Antenna parameters
 - 1 MW power (unless specified)
 - Varying antenna vertical position and toroidal injection angle sign

Feasible frequency ranges determined by the equilibria

NSTX L-mode 1st harmonic

• $\zeta \sim 0.4$ can be reached across the whole plasma

NSTX L-mode 2nd harmonic

- Fisch-Boozer CD is favored in the central region
- Ohkawa CD is favored at the edge region
- A region of high-efficiency Ohkawa with high B-field side absorption occurs
- Low-efficiency typically caused by N_{II} sign mixing

MAST-U 1st harmonic

- Generally lower CD efficiency in MAST-U
- Large number of cases are damped on high B-field side because of the magnetic field well at the edge, driving Ohkawa current
- Central region less accessible (same reason)

MAST-U 2nd harmonic

- The space between the 2nd and 3rd harmonic is more narrow -> worse central region accessibility
- Ohkawa CD at 3rd harmonic is the dominant scenario

Quasilinear effects play a role

- Quasilinear absorption typically shifts inwards with higher power because of distribution function flattening
- CD efficiency can either increase or decrease with power

EBW H&CD is rather robust

- Shown here are medians of absolute peak current location ρ and relative current drive efficiencies and current profile widths
- The median change in CD efficiency is <5% for <25% variations
- The deposition locations are not changed considerably
- Large changes (not shown here but taken into account) are predicted for mid-plane cases (oscillating, low-z)

Summary & conclusions

- EBW heating & current drive investigated with AMR + LUKE codes
 - Large number of different cases examined
- Power can be deposited and current driven at any radius
 - CD efficiency ζ(=3.27×I/P×R₀n_{e19}/T_{ekeV}) ~0.4 can be reached
 - (on-axis 140 kA/MW NSTX L-mode, 90 kA/MW MAST-U)
 - Quasilinear effects must be considered
- Antenna vertical position and/or frequency are the key parameters
 - Various H&CD scenarios possible
 - EBWs can be optimized for a specific goal
- EBW H&CD is rather robust with respect to n_e and T_e variations
 - More sensitive to B_{pol}—possibly compensated by B_{tor}

CD efficiency independent of N_{II} in general

N_{//} spread causes low CD efficiency

Changing B_{pol} (I_P) has larger effect

NSTX L-mode, 17 GHz

 Shown here are medians of absolute peak current location ρ and relative current drive efficiencies and current profile widths

- The median change in CD efficiency is <25% for <25% variation</p>
- The deposition locations are not changed considerably
- Can be possibly compensated by changing B_{tor}

Low and high CD efficiency cases compared

n_e/T_e variations details

B_{pol} variations details

