

Supported by

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INI Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD U Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

(D) NSTX

B.P. LeBlanc¹, R.E. Bell¹, P. Bonoli², R. Harvey³,
W.W. Heidbrink⁴, J.C. Hosea¹, S.M. Kaye¹, D. Liu⁵,
R. Maingi⁶, S.S. Medley¹, M. Ono¹, M. Podestà¹,
C.K. Phillips¹, P.M. Ryan⁶, A.L. Roquemore¹,
G. Taylor¹, J.R. Wilson¹
In collaboration with the NSTX Team

1) PPPL, Princeton, NJ 08543, USA
 2) PSFC,-MIT, Cambridge, MA,02139, USA
 3) CompX, Del Mar, CA 92014, USA
 4) University of California, Irvine, CA 92697, USA
 5) Department of Physics, University of Wisconsin-Madison, WI 53706, USA
 6) ORNL, Oak Ridge, TN 37831, USA

NSTX Results Forum Princeton, 02 December 2010

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

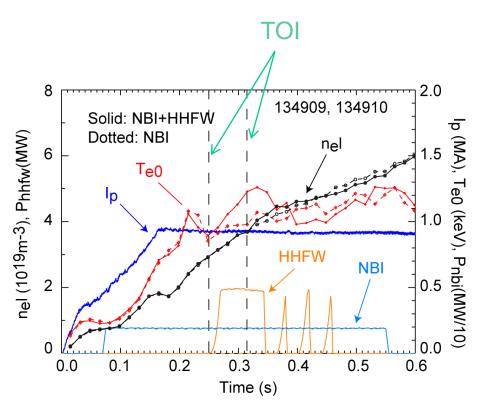
Office of

Science

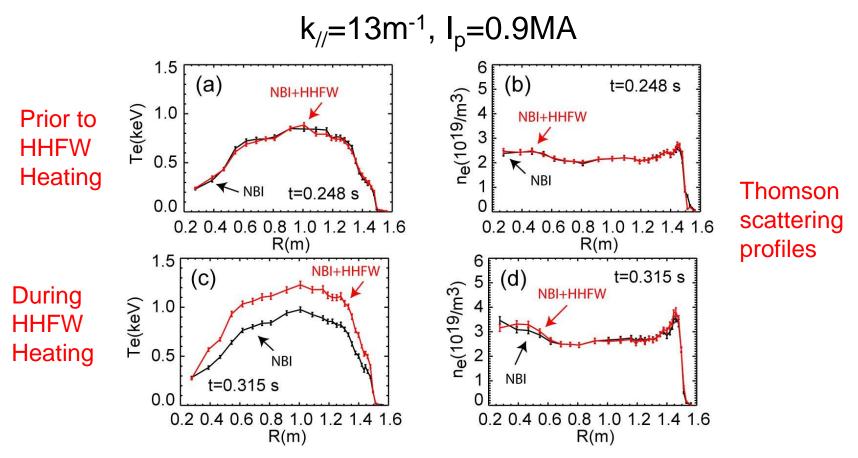
Culham Sci Ctr

* Work supported by USA DoE contract DE-AC02-09CH11466

Introduction


- NSTX capabilities:
 - Auxiliary heating system includes 7 MW NBI and 6 MW ICRF
- The physics basis of HHFW heating and a review of recent HHFW research are available elsewhere [2], [3]:
 - Typically more than 5 ion-cyclotron resonances present within the plasma in NSTX
- Competition between two dominant absorption mechanisms inside the LCFS:
 - Electron heating via Landau damping and transit-time magnetic pumping,
 - Wave-field acceleration of NBI generated fast ions

[2] M. ONO, Physics of Plasmas, 2, (1995) 4075
[3] G. TAYLOR, et al., Physics of Plasmas, Vol. 17 (2010) 05611



Compare Two Matched ELM-free H-mode Discharges NBI+HHFW vs. NBI

- I_P: 0.9MA, TF: 0.55T
- NBI: 2MW, 90kV
- HHFW: 2MW, k_{//}=13m⁻¹
- Benign MHD activity in both plasmas
- MSE unavailable
- Times of interest (TOI)
 0.248s and 0.315s

Broad T_e Profile Increase with HHFW Heating of NBI-induced H-mode Plasma

- Identical T_e and n_e H-mode profiles prior to HHFW power onset
- Broad T_e profile increase during HHFW heating, n_e profile remains unchanged. Plasma stayed in the H mode.

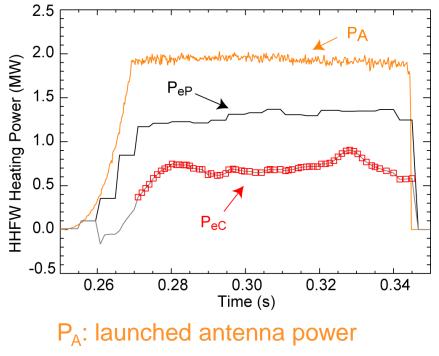
Estimate HHFW Power Fraction Absorbed within LCFS Based on the Electron Stored Energy

- Three TRANSP calculations of the electron stored energy:
 - (1) Analysis based on the experimental data for combined NBI and HHFW heating
 - (2) Analysis based on the NBI-only experimental data
 - (3) A predictive TRANSP/TORIC calculation
 - Electron thermal diffusivity, χ_e , from the NBI-only reference discharge
 - Assume 100% of antenna power absorbed within LCFS
 - Predict T_e for the NBI+HHFW

Evolution of Electron Stored Energy Estimates

- W_{ex} is the electron stored energy obtained from the experimental NBI+HHFW TRANSP analysis
- W_{eR} corresponds to the reference NBI-only analysis
- W_{eP} corresponds to the predictive calculation mentioned in previous slide

 $W_{eX} < W_{eP}$ implies absorption within LCFS is lower than 100%

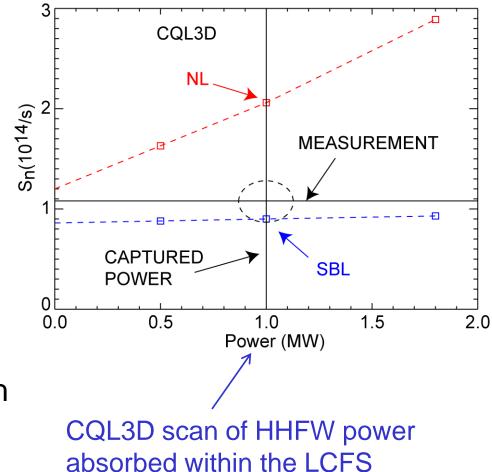


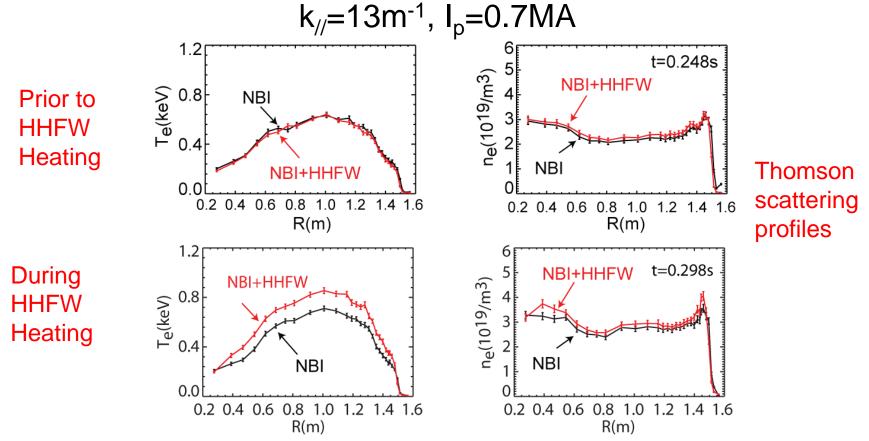
Power Coupling to Enclosed Plasma Based on Electron Stored Energy, k_{//}=13m⁻¹, I_p=0.9MA

- Power coupled to the enclosed plasma
- $P_{eC} = f_C \times P_{eP}$, where the fraction, f_C , of the captured antenna defined as

$$f_C = (W_{eX}-W_{eR})/(W_{eP}-W_{eR})$$

- $< f_c > = 0.53 \pm 0.07$
- 1MW absorbed within LCFS
 - 0.7MW by electrons
 - 0.3MW by fast ions

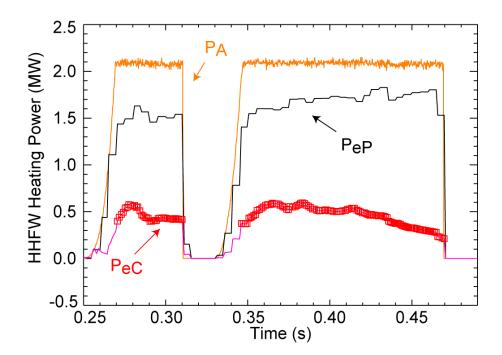

P_{eP}: TORIC calculation of power to electrons assuming 100% capture With LCFS


CQL3D Predicts Significant Fast-ion Losses

Neutron Production (S_n)

- "no loss" (NL) exceeds S_n measurement
- "simple-banana-loss" (SBL) is at lower limit of measurement error range
 - For 1MW captured within LCFS, about 60% of the power to fast ions is lost compared to NL
- A first-order final-orbit width loss model will be implemented for CQL3D

T_e Profile Increase with HHFW Heating of NBI-induced H-mode Plasma


- Identical T_e and n_e H-mode profiles prior to HHFW power onset
- •T_e profile increase during HHFW heating, n_e profile remains unchanged. Plasma stayed in the H mode.

HHFW Power Coupling to Enclosed Plasma Based on Electron Stored Energy, $k_{//}=13m^{-1}$, $I_p=0.7MA$

- Power coupled to the enclosed plasma
- $P_{eC} = f_C \times P_{eP}$, where the fraction, f_C , of the captured antenna defined as

 $f_C = (W_{eX}-W_{eR})/(W_{eP}-W_{eR})$

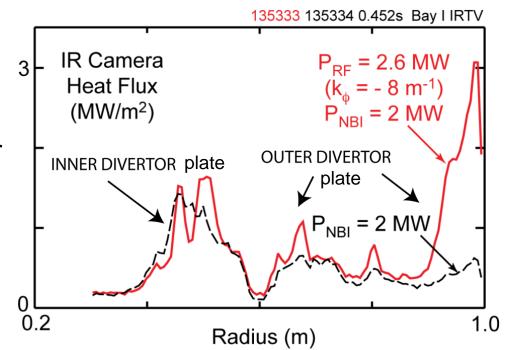
- $< f_c >= 0.28 \pm 0.06$
- 0.59 MW absorbed within LCFS
 - 0.42 MW by electrons
 - 0.17 MW by fast ions

P_A: launched antenna power

 P_{eP} : TORIC calculation of power to electrons assuming 100% capture With LCFS

Conclusion

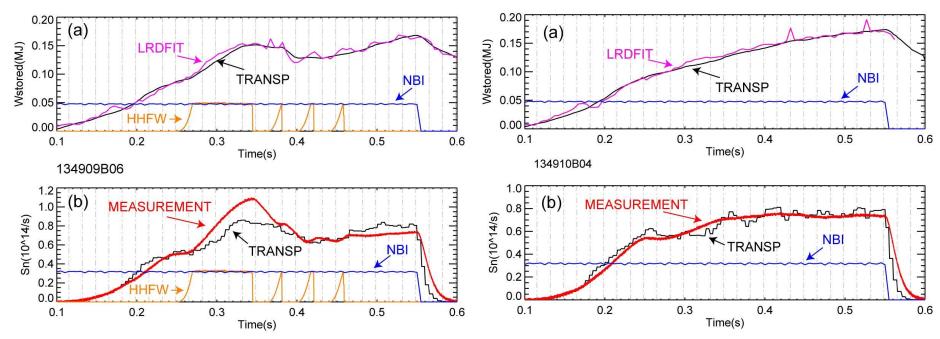
- HHFW heating of NBI-induced Elm-free H-mode plasma
 - T_e increases over most of the radial profile for $I_p=0.9MA$
 - 50% of antenna power captured with the LCFS
 - 2/3 of power inside LCFS absorbed by electrons
 - 1/3 of power inside LCFS absorbed by fast-ions
 - Fast-ion diagnostics FIDA and NPA observed no changes during HHFW heating
 - Captured fraction is about 30% with 0.7MA target NBI-induced H-mode plasma
 - Edge physics effects
 - Improved core coupling partly attributed to first wall lithium coating, which keeps the n_e < n_{onset} in front of the antenna (in 2009)
 - Infrared radiation measurements show local power flux on divertor plates reaches ~ 1 MW/m² per MW of HHFW heating


BACK-UP SLIDES

Divertor Power Flux Increase during HHFW Heating

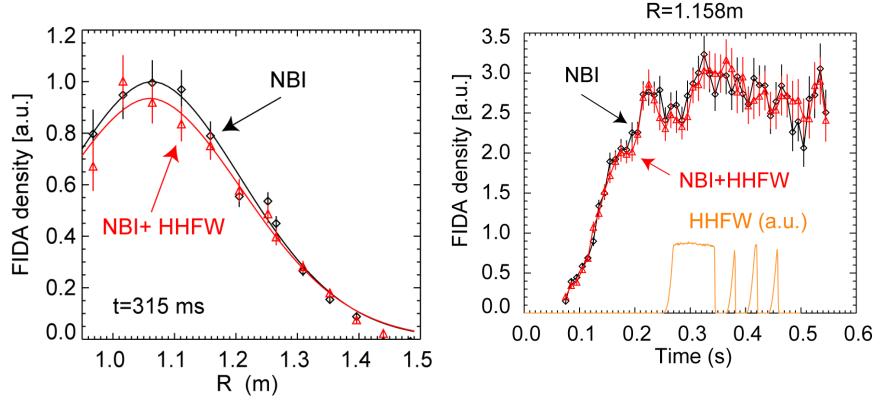
- Infrared measurements [6] indicate a significant amount of the antenna power redirected to divertor
- Heat flux reaching the divertor for two consecutive discharges, both with 2 MW NBI, but with the second having an additional 2.6 MW HHFW heating. In the vicinity of R = 1m, the heat flux increases fivefold with RF power applied

[6] D.M. Mastrovito, et al., Rev. Sci. Instrum. 74 (2003) 5090


- Divertor heat flux vs. major radius (Preliminary calibration)
- Antenna set to $k_{//} = -8 \text{ m}^{-1}$

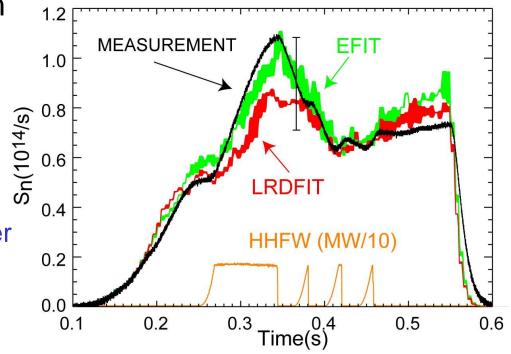
TRANSP Analyses of NBI+HHFW and NBI-only ELM-free H-mode Discharges

NBI+HHFW



 Good match for stored energy, but underestimate neutron production

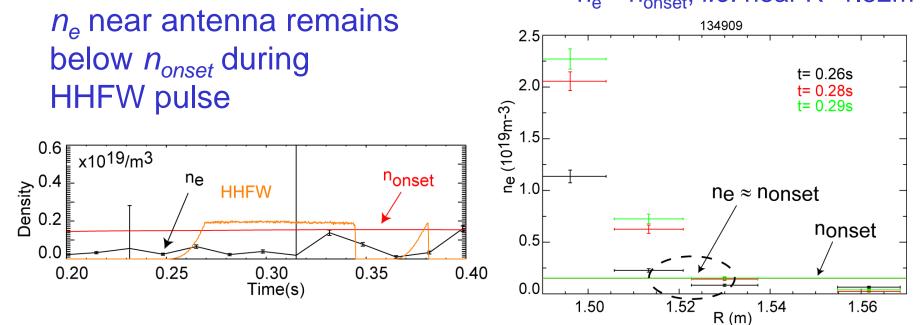
 Good match for stored energy and neutron production


FIDA Measurements for NBI+HHFW vs. NBI No Fast-ion density change observed with HHFW *in this case*

 FIDA density profiles at t=0.315 s for, red, plasma with NBI+HHFW heating and, black, reference NBI-only plasma Evolution at R=1.158m of FIDA density for, red, plasma with NBI+HHFW and, black, reference NBI-only plasma

TRANSP S_n Estimate Depends on Equilibrium

- Equilibrium solvers LRDFIT and EFIT predict S_n within experimental bar
- EFIT's current profile is more peaked
 - More current in the core region is conducive to better fast-ion confinement and higher neutron production.
- Measurement of q profile (MSE) needed for future experiments



Moving Onset Density Layer away from Antenna Facilitated by Lithium Coating Pumping

 Onset density, n_{onset}, for perpendicular fast-wave oscillation[5]

$$\longrightarrow n_{onset} \propto B \times k_{//}^2 / \omega$$

Wave onset occurs where $n_e \approx n_{onset}$, *i.e.* near R=1.52m

[5] J.C. HOSEA, et al., Phys. Plasmas 15 (2008) 056104

CQL3D to Estimate Effects of Wave Interaction with Fast lons

- Currently TRANSP lacks the software to evolve selfconsistently the fast-ion energy distribution under the influence of the wave field
- CQL3D is a relativistic collisional, quasi-linear 3D code which solves a bounce-averaged Fokker-Planck equation
- CQL3D can be used to compute the wave effects on the fast ions and neutron production
- Using input data from TRANSP at a particular time of interest, CQL3D is "run to equilibrium" in order to estimate the neutron rate
- CQL3D offers two calculation options:
 - A "no loss" option (NL), which assumes zero banana width orbits
 - A "simple-banana-loss" calculation (SBL)