

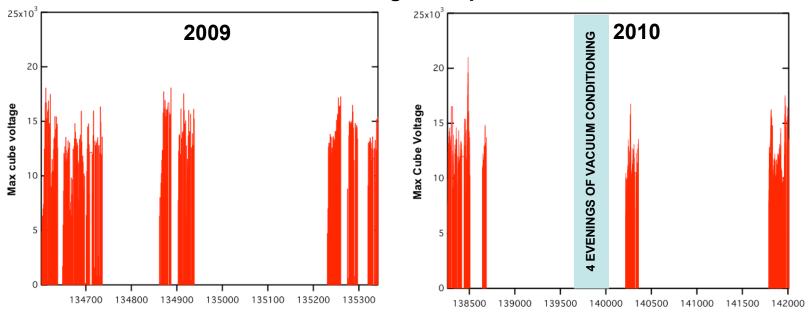
College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U** SNL Think Tank, Inc. **UC Davis** UC Irvine **UCLA** UCSD **U** Colorado **U** Maryland **U Rochester U** Washington **U Wisconsin**

XMP-26 High Power Operation of the NSTX HHFW Antenna

P. M. Ryan

Oak Ridge National Laboratory J. C. Hosea, B. P. LeBlanc, G. Taylor, J. R. Wilson Princeton Plasma Physics Laboratory

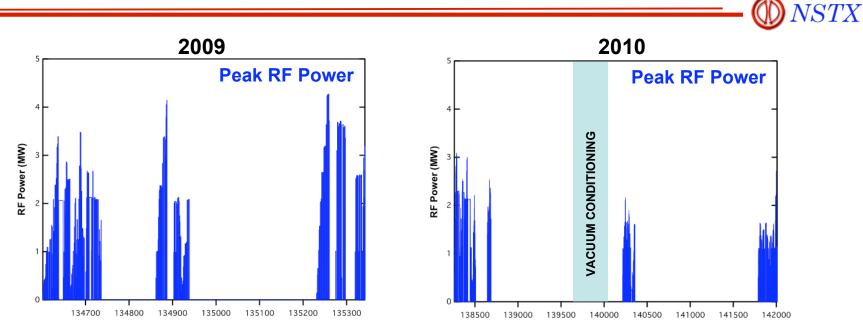
> NSTX Results & Theory Review PPPL, December 2, 2010


Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST** ENEA. Frascati CEA. Cadarache **IPP**, Jülich **IPP**, Garching ASCR. Czech Rep **U** Quebec

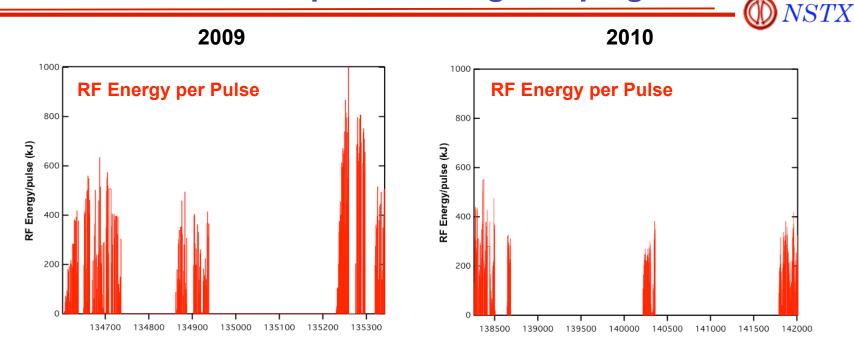
Summary of High Power HHFW Operation for 2010

- 2010 HHFW operation with the LLD filled by evaporated lithium from the LITER applicators was problematic.
- In 2009 the upgraded antennas conditioned fairly rapidly to the 4 MW level in a lithium environment.
- In 2010, reliable operation above 1.2 MW was unachievable even after aggressive antenna conditioning.
- Lithium expulsion from antenna surfaces was greater than observed last year at similar power levels.
- Dust and granular particles were seen during HHFW operation that were largely absent in years past.
- Antenna conditioning can be set back significantly by one plasma "event".

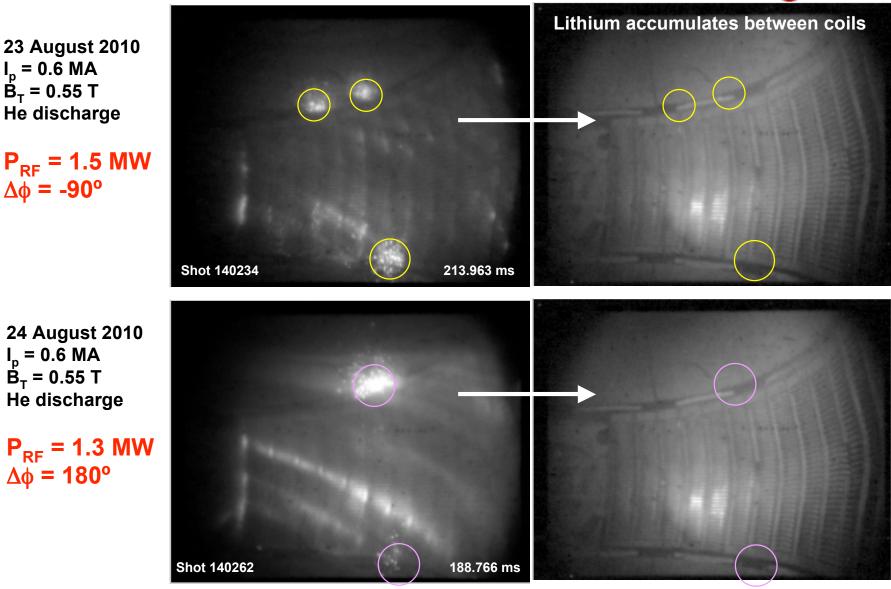
Maximum HHFW system voltage with plasma basically unchanged (~15 kV) between 2009 & 2010


Max voltage with plasma

Vacuum conditioning needed to achieve these voltages.

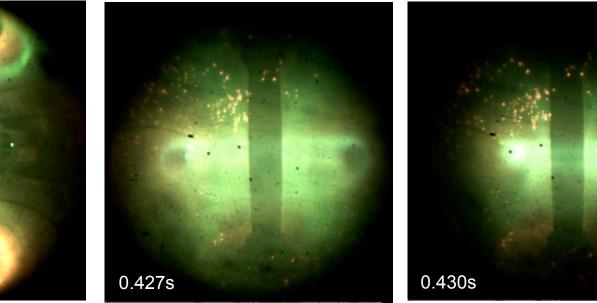

- > Aug 11 Xmtrs 1&2 up to 18-19 kV (180°), 14-15 kV (-90°)
- Aug 13 Xmtrs 3&4 up to 19-20 kV (180°), 14 kV (-90°)
- Aug 16 Xmtrs 5&6 up to 22-23 kV (180°), 1&2 up to 20 kV (180°)
- Aug 18 Xmtrs 3&4 up to 20 kV (180°)
- Steady glow often seen near antenna grounds during vacuum conditioning.
- Arcs generally appear in high voltage regions (strap top & bottom).
- All vacuum arcs occur in the antenna box itself.

Maximum HHFW power with plasma much lower in 2010 than in 2009


- In 2009 the RF power gradually increased (>4 MW) as the antennas were cleaned/conditioned, both during each day's operation and throughout the campaign.
- In 2010, the RF power quickly hit a limit between 1-2 MW and never improved.
- Extensive vacuum conditioning did not increase power level limit.

HHFW energy per pulse much lower in 2010 than in 2009 and did not improve during campaign

- In 2009 the RF energy per pulse increased as power increased and number of trips decreased. The pulse length was increased for XPs at the end of the year.
- In 2010, the RF energy per pulse never improved, due to power limit and continual arcs and trips.


Location of lithium ablation spots generally do not depend on array phasing, but on lithium accumulation

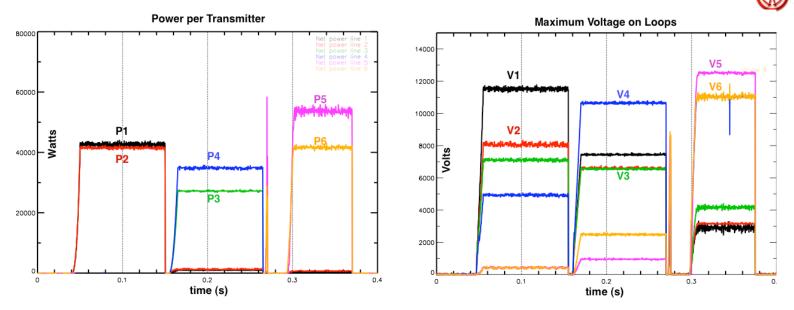
Lithium deposition affects HHFW antenna with coatings and dust projectiles

- 🔘 NSTX

Shot 141988 $B_T = 4.5 \text{ kG}, I_P = 0.9 \text{ MA}, \text{ Helium}, P_{RF} = 1.9 \text{ MW}$

Lithium from top of antenna moving along field line.

Lithium projectiles at end of shot, moving outward toward antenna

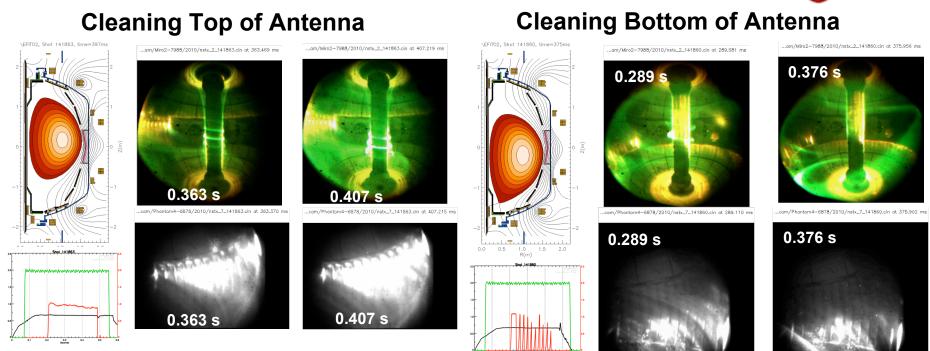

What is the primary cause of increased arcing in 2010?

- Increased lithium oxide dust?
- Increased lithium deposition on the antenna?
- Changes in antenna surface properties?

NEED TO INSPECT THE ANTENNA FOR CLUES

0.293s

Develop More Efficient Antenna Cleaning/Conditioning Techniques ➡ Between-shot, sequential transmitter vacuum conditioning



Transmitters were sequentially pulsed in pairs for vacuum conditioning between shots.

- 3 x 0.1s/30 s for 300 s
- Advantages:
 - Increases overall effective duty cycle.
 - Easier to match and to adjust power levels for each loop than for all six simultaneously.
 - Arcing on one loop wouldn't trip all six transmitters. The other pairs get full conditioning pulse during their turns.
- Disadvantages:
 - Although de-couplers isolate nearest transmitters from one another, voltages still appear on unpowered loops due to uncompensated mutual inductances (next-to-nearest neighbors).
 - Need to switch the matching between vacuum and plasma loading each shot.

Develop More Efficient Antenna Cleaning/Conditioning Techniques ➡ Plasma Scrubbing of Antenna

- Moved NBI-heated plasma ± 20 cm vertically from shot to shot to "plasma scour" top and bottom of antenna.
- Profuse lithium expulsion throughout, enhanced while RF is on.
- Observed no great improvement in power capability after limited testing (4 shots).

Future HHFW Operation Plans Need to protect antennas from Li contamination

🕦 NSTX

- Improve shielding/cleaning antenna arrays
 - Improve between-shot conditioning techniques
 - Evaluate effectiveness of plasma scrubbing
 - Modify BN limiters?
 - Shield above array?
- More directed method of filling LLD needed to keep antenna surfaces clean
 - Improved collimation on LITER closest to antenna?
 - More effective LLD filling technique?