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Transport induced by chirping modes can seriously
degrade the confinement of energetic particles
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Up to 40% of injected beam is
observed to be lost in DIlI-D and
NSTX

Chirping behavior is observed to
be a precursor to avalanches in
NSTX

What is the dominant fast ion
transport mechanism (convective
or diffusive)? When is quasilinear
theory applicable? Gorelenkov’s talk

Why chirping is ubiquitous in
NSTX but rare in DIII-D?



What makes wave chirping likely to happen?

Starting point: kinetic equation plus wave power balance close to marginal stability

Berk, Breizman and Pekker, PRL 1996 Lilley, Breizman and Sharapov, PRL 2009
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Cubic equation: lowest-order nonlinear correction to the evolution of mode amplitude C

d%gt) —C(t) = —Zde‘”H fOt/Q dr7m2C (t — T) X

J
—_ ~3 2 ]
X ft 2t dTl e_ystochT (2T/3+7-1)+7'Vd'r'ag7-(7-+7-1) X

0
XC({t—717—m)C*(t —27 —11)

Berk, Breizman and Pekker, PRL 1996 Lilley, Breizman and Sharapov, PRL 2009



What makes wave chirping likely to happen?

Starting point: kinetic equation plus wave power balance close to marginal stability
Cubic equation: lowest-order nonlinear correction to the evolution of mode amplitude C
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* If nonlinearity is weak: linear stability, solution saturates at a low level and f merely
flattens (system not allowed to further evolve nonlinearly).

* If Cblows up: system enters a strong nonlinear phase with large mode amplitude and
can be driven unstable (precursor of chirping modes).

Berk, Breizman and Pekker, PRL 1996 Lilley, Breizman and Sharapov, PRL 2009



What makes wave chirping likely to happen?

Starting point: kinetic equation plus wave power balance close to marginal stability
Cubic equation: lowest-order nonlinear correction to the evolution of mode amplitude C
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* If nonlinearity is weak: linear stability, solution saturates at a low level and f merely
flattens (system not allowed to further evolve nonlinearly).

* If Cblows up: system enters a strong nonlinear phase with large mode amplitude and
can be driven unstable (precursor of chirping modes).
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A general criterion for Alfvén wave chirping

(strongly dependent on competition between fast ion scattering and drag)
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A general criterion for Alfvén wave chirping

(strongly dependent on competition between fast ion scattering and drag)
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A general criterion for Alfvén wave chirping

(strongly dependent on competition between fast ion scattering and drag)
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A general criterion for Alfvén wave chirping

(strongly dependent on competition between fast ion scattering and drag)

1
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Phase space integration

Eigenstructure information:

q/(h‘vdr - SEe™t
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Crt accounts for collisional coefficients
varying along resonances and particle orbits
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A general criterion for Alfvén wave chirping

(strongly dependent on competition between fast ion scattering and drag)
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A general criterion for Alfvén wave chirping
(strongly dependent on competition between fast ion scattering and drag)
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Turbulence scattering explains why chirping is common in NSTX but rare in DIII-D

Proposed criterion for Alfvén wave chirping onset:
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Inclusion of fast ion micro-turbulence

From GTC gyrokinetic simulations for passing
particles (Zhang, Lin and Chen, PRL 2008):
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Unlike in DIII-D, ion transport in NSTX in
mostly neoclassical



Turbulence scattering explains why chirping is common in NSTX but rare in DIII-D

Proposed criterion for Alfvén wave chirping onset:
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Correlation between the emergence of chirping and a substantial
decrease of ion micro-turbulence in DIII-D:

f (kHz)

D3D #152818

0

0.80 0.85 0.90 0.95 1.00
tisl ,°

940 960

980
Time (ms)

1000

log;o(P"?

D3D #152828

D3D #152823

xi [m?/s]

0 . . . . . . 0.0 ) s )
0.800.850.90 9.95 1.001.051.101.15 07 08 09110 11 1.2
g Ul t[s]
l I
/

shot #152828 CO2 Interferometer

log;o(P'?)

/
shot #152823 CO2 Interferometer  log,o(P"?)
140 B Ehaka iy
-3.5 -3.0
35 120
-3.5
40 o 100 -4.0 -
E 80 E -4.0
45 = 45 =
60 -4.5
5.0 -5.0
40 -5.0
20 ST it
900 920 940 960 980 1000 1020 1040 920 940 960 980 1000
Time (ms) Time (ms)

Duarte, Berk, Gorelenkov et al, PRL (submitted)



Conclusions

Theory and experiments have indicated that wave chirping response is linked with low
turbulent activity;

Although micro-turbulence-induced fast ion transport is low compared with Alfvén

wave-induced transport, it competes with collisional transport (e.g., during the early
non-linear evolution);

Micro-turbulence should be factored in to considerations of mode drive and saturation
in burning plasmas.
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Future possibilities

Dedicated experiments with negative triangularity on DIII-D will explore the
consequences of this chirping study;

NSTX-U: possibility of use of HHFW and 3D fields to increase fast ion stochasticity;
Predictions for ITER scenarios.



Conclusions

 Theory and experiments have indicated that wave chirping response is linked with low
turbulent activity;
e Although micro-turbulence-induced fast ion transport is low compared with Alfvén

wave-induced transport, it competes with collisional transport (e.g., during the early
non-linear evolution);

 Micro-turbulence should be factored in to considerations of mode drive and saturation
in burning plasmas.

Future possibilities

* Dedicated experiments with negative triangularity on DIII-D will explore the
consequences of this chirping study;

 NSTX-U: possibility of use of HHFW and 3D fields to increase fast ion stochasticity;

* Predictions for ITER scenarios.

The ultimate goal of this dedicated study is to identify the applicability of reduced
models for fast ion transport
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