NSTX Research Program Overview for 2009-11 and Beyond

Jon Menard, PPPL

For the NSTX Research Team

LSB B318, PPPL February 18-20, 2009

NSTX PAC-25 Meeting

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

U Quebec

College W&M Colorado Sch Mines Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics New York U Old Dominion U ORNL PPPL** PSI Princeton U **Purdue U** SNL Think Tank, Inc. **UC Davis UC Irvine UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U Washington**

U Wisconsin

NSTX 5 year plan for 2009-13 was favorably reviewed

- "Proposed research clearly aims to position the ST as a candidate for future high priority US research missions, as articulated in recent FESAC reports
 - High heat flux facility for PMI research, as embodied in NHTX
 - Nuclear component testing, as embodied in ST-CTF"
- "The panel agrees that the proposed research priorities address these missions
 - 100% non inductive current drive
 - Particle and heat flux control
 - Non inductive start up and ramp up
 - Sustained high beta operation"
- "The major facility upgrades are appropriately sequenced:
 - 1. The liquid lithium divertor (LLD) is an innovative approach to density control
 - Potential for high reward, but no guarantee LLD will provide necessary control
 - Measuring and modeling effects associated with lithium will be critical to understanding the science and projecting future applications.
 - It is not clear that there is sufficient attention paid to this in the proposal.
 - A backup strategy for density control should be better developed
 - 2. The center stack upgrade is very well motivated and should be installed as soon as possible
 - 3. The second neutral beam source is essential to take advantage of higher B_T and current capability from center stack upgrade"

NSTX advances toroidal plasma science and burning plasma physics, and provides attractive near-term fusion options

NSTX Mission Elements:

- Understand unique physics properties of ST
 - Assess impact of low A, high β, high v_{fast}/v_A , etc. on all aspects of toroidal plasma science
- Complement tokamak physics, support ITER
 - Exploit unique ST features to improve tokamak understanding, while also benefiting from tokamak R&D
- Establish attractive ST operating conditions for future fusion applications
 - Long-term goal: Understand and utilize advantages of the ST configuration for addressing key gaps between ITER performance and that needed for DEMO

Pre-conceptual designs

NSTX creates stable, well diagnosed plasmas at high β enabling a wide range of toroidal physics studies

 ST accesses higher normalized current & higher normalized β

 \longrightarrow higher $\beta_{Toroidal}$

(High β_N results in part from rotational stabilization of resistive wall mode)

 Access ITER-level v*, extending confinement understanding to high β

ST operates at higher ρ* than tokamaks / ITER - impacts thermal and fast-ion transport, MHD

 Extrapolation in ρ* from present STs to next-step STs is small

Improved control of plasma instabilities has significantly increased the duration of sustained high β in NSTX

Increased plasma shaping from improved n=0 control for high κ and δ operation

 $S \equiv q_{95} I_P / aB_T [MA/mT]$

+ $n \ge 1$ EF/RWM control =

Control coils also used to study:

- · Locked mode thresholds
- Resonant field amplification
- Rotation damping from NTV
- Anomalous momentum transport
- Pedestal transport and stability

Duration of $\beta_T > 15\%$ increased factor of 4 from 2002 to 2008

NSTX has sustained β_T needed for ST-CTF for 4 current redistribution times

FY09-11 goals: Improve/characterize sustainment of high-β, understand RWM/NTV physics at lower v*

NSTX is developing a deeper understanding of ion and electron energy transport for STs and tokamaks

- Ion τ_E ~ I_P, consistent with neoclassical ion transport
 - Implies ion turb. suppressed by high E×B shear → possibility of isolating causes of e-transport
- Electron & ion τ_E scale differently, and different than at higher A:
 - Ion $\tau_{\text{E}} \sim I_{\text{P}}$, electron $\tau_{\text{E}} \sim B_{\text{T}}$
- High-k scattering data indicates χ_e correlated w/ high-k density fluctuations
 - Correlation holds both spatially and versus B_T
 - Consistent with ETG at large r/a (i.e. in T_e gradient region)

FY09-11 goals: Measure low-k turbulence, understand modes responsible for anomalous e/i transport

NSTX accesses broad range of fast ion parameters, and a broad range of fast particle modes

- Figure at right illustrates NSTX
 operational space, as well as
 projected operational regimes for:
 ITER (α's only), ST-CTF (α+NBI),
 ARIES-ST (α's)
- Also shown are parameters where typical fast particle modes (FPMs) have been studied.
- Conventional beam heated tokamaks typically operate with V_{fast}/V_{Alfven} < 1.
- CTF in avalanche regime motivates studies of fast ion redistribution
 - ITER with NBI also unstable to AE
- Higher ρ^* of NSTX compensated by higher beam beta

Figure above is simplified picture - there are other dependences, such as q profile, ρ^*

NSTX finds AE avalanches can induce fast-ion redistribution and/or loss - potentially important for ITER and ST-CTF

FY09-11 goals: Improve ξ(r) data and predictive capability for fast-ion transport, extend to H-mode

NSTX has improved the understanding and performance of wave heating & CD techniques in over-dense plasmas

- High-harmonic fast-wave (HHFW)
 - Discovered that surface waves reduce heating efficiency if density near antenna is too high
 - Control of edge density improves heating → record T_e = 5keV in NSTX achieved with HHFW

- Electron Bernstein Wave (EBW)
 - Discovered that collisional damping at mode conversion layer reduces coupling
 - Higher T_e at MC layer via Li-conditioning increases EBW transmission efficiency from 10% to 50-60% in H-mode→ Improved prospects for EBW as H&CD tool

FY09-11 goals: Improve HHFW heating in D H-mode for ramp-up & sustainment, MAST EBW collaboration

NSTX is unique in the world program in exploring lithium in a diverted H-mode plasma

- Dual Lithium evaporators (LITERs) provide complete toroidal coverage of lower divertor
 - Improved performance vs. 1 LITER
 - 2008: High-performance operation with NO between-shot He glow → increased shot-rate
 - LITER EVAPORATORS

- Reproducible ELM elimination from Li
 - Plasma density reduced
 - Pulse-length extended
 - At 800kA, power must be reduced to avoid β limit
 - Confinement time doubled (up to 80ms)
 - Large reduction in divertor $D_{\alpha} \rightarrow$ reduced recycling

FY09-11 goals: Understand Li-plasma interaction, achieve density control with Liquid Lithium Divertor

NSTX accesses ITER-level divertor heat fluxes and is exploring mitigation of steady-state and transient heat fluxes

Magnetic geometry strongly influences peak heat flux

Partial detachment reduces peak heat flux

- Lithium conditioning can eliminate ELMs
- RMPs can controllabily trigger ELMs and expel impurities from Li-ELM-free plasmas

FY09-11 goals: Understand & develop steady-state heat-flux mitigation, ELM control for STs and ITER

NSTX is testing unique methods of non-solenoidal plasma current start-up and ramp-up for STs

- Start-up: Coaxial Helicity Injection
 - Generated record closed-flux I_P=160kA
 - Demonstrated coupling to induction and compatibility with high performance H-mode
 - Higher I_P limited by lack of auxiliary heating, possibly impurities/divertor conditions

- Ramp-up: High Harmonic Fast Wave
 - HHFW heats 250kA plasma to T_e =1keV
 - Produces f_{BS}=85% H-mode plasma
 - Limited by antenna voltage stand-off, ELMs

FY09-11 goals: Improve CHI start-up (LLD target plates, Li, absorber coils), high-P_{HHFW} for ramp-up

NSTX has developed and sustained scenarios with high non-inductive fraction and high normalized β

•
$$f_{NICD} = 65\%$$

• $f_{\nabla p} = 55\%$

- $\beta_N = 5.5-6$ $H_{98} = 1-1.1$

Predicted and reconstructed J profiles are in agreement when MHD activity is weak

- Recent long-pulse discharges which avoid core rotating MHD activity exhibit J-profile equilibration
 - Spikes in MSE pitch angle are low-f MHD (early) and large ELMs (late)

FY09-11 goals: Density, β, RFA/RWM, ELM, impurity control for sustained & higher non-inductive fraction

Near-term NSTX research, and longer-term NSTX Major Upgrades will prepare the U.S. to address FESAC Priorities, Gaps, and Opportunities

NSTX:

Providing foundation for understanding ST physics and performance

Upgraded NSTX:

- Study high beta plasmas at reduced collisionality important for further understanding confinement, stability, start-up, current drive
- Assess full non-inductive current drive operation needed for steadystate ST applications and ITER advanced operating scenarios
- Prototype heat and particle exhaust solutions for next-step facilities

- Tame the plasma-material interface
 - Exploit intrinsic high heat flux of ST to understand boundary physics at fusion-relevant edge plasma conditions and heat/particle fluxes
- Advance fusion engineering science
 - Exploit high β , compactness of ST to achieve high neutron flux and fluence at reduced size and cost, reduced T consumption

ST is attractive configuration for "Taming the plasma-material interface"

• FESAC-PP identified PMI issue as highest priority: "...solutions needed for DEMO not in hand, ...require major extrapolation and substantial development"

Scientific mission of National High-power advanced Torus experiment (NHTX): "Integration of a fusion-relevant plasma-material interface with stable sustained high-performance plasma operation"

PMI research and integration goals:

- Create/study DEMO-relevant heat-fluxes
- Perform rapid testing of new PMI concepts
 - Liquid metals, X-divertor, Super-X divertor
- PMI research at DEMO-relevant T_{wall} ~ 600°C
- Plasma-wall equilibration: τ_{pulse} = 200-1000s
- Develop methods to avoid T retention
- Demonstrate compatibility of PMI solutions with high plasma performance:
 - High confinement without ELMs
 - High beta without disruptions
 - Steady-state, fully non-inductive
- Study high β_N , f_{BS} for ST-DEMO and ST-CTF
- Test start-up/ramp-up for ST-CTF and ST-DEMO

National High-power advanced
Torus eXperiment (NHTX)

Baseline operating scenario:

= accome operating economic		
P _{heat}	50MW	
R ₀	1m	
Α	1.8-2	
κ	≤ 3	
B⊤	2T	
I _P	3-3.5MA	
β _N	4.5	
βт	14%	
n _e /n _{GW}	0.4-0.5	
f _{BS}	≈ 70%	
f _{NICD}	100%	
H _{98Y,2}	≤ 1.3	
E _{NB}	110keV	
P/R	50MW/m	
Solenoid	1/2 swing to full IP	

ST-based Component Test Facility (ST-CTF) is attractive concept for "Harnessing Fusion Power"

ST-CTF Required Conditions:

Performance metrics	ITER	Required Conditions	Demo Goals
Continuous operation	~hour	weeks	~months
14-MeV neutron flux on module (MW/m²)	~0.8	1.0-2.0	~3
Total neutron fluence goal (MW-yr/m²)	~0.3	6	~6-15
Duty factor goal	~1%	30%	~80%
Tritium self-sufficiency goal (%)	~0	~100	≥100

From M. Peng APS-2007, based on NCT presentation to FESAC 8/7/2007

•	ST	advantages	for	CTF:
---	----	------------	-----	------

- Compact device, high β
 - Reduced device cost
 - Reduced operating cost (P_{electric})
 - Reduced T consumption
- Simplified vessel and magnets
 - Fully modularized core components
 - Fully remote assembly/disassembly

W _L [MW/m²]	0.1	1.0	2.0
R0 [m]	1.20		
A	1.50		
kappa		3.07	
qcyl	4.6	3.7	3.0
Bt [T]	1.13	2.	18
lp [MA]	3.4	8.2	10.1
Beta_N	3	.8	5.9
Beta_T	0.14	0.18	0.28
n _e [10 ²⁰ /m³]	0.43	1.05	1.28
BS	0.58	0.49	0.50
T _{avgi} [keV]	5.4	10.3	13.3
T _{avge} [keV]	3.1	6.8	8.1
HH98		1.5	
Q	0.50	2.5	3.5
P _{aux-CD} [MW]	15	31	43
E _{NB} [keV]	100	239	294
P _{Fusion} [MW]	7.5	75	150
T M height [m]		1.64	
T M area [m²]	14		
Blanket A [m²]	66		
F _{n-capture}	0.76		
P/R [MW/m]	14	38	61
Solenoid	Iron core or MIC solenoid for startup		

ST-based Component Test Facility (ST-CTF)

FESAC Toroidal Alternates Panel (TAP) recently prioritized issues and gaps for the Spherical Torus (ST) for the ITER era

<u>ST ITER-era goal:</u> "Establish the ST knowledge base to be ready to construct a low aspect-ratio fusion component testing facility to inform the design of a demonstration fusion power plant"

"Tier 1" issues and key questions from TAP, and NSTX goals:

- 1. <u>Startup and Ramp-Up</u>: Is it possible to start-up and ramp-up the plasma current to multi-MA levels using non-inductive current drive w/ minimal or no central solenoid?
 - NSTX goal: demonstrate non-inductive ramp-up and sustainment
- 2. <u>First-Wall Heat Flux</u>: What strategies can be employed for handling normal and off normal heat flux consistent with core and scrape-off-layer operating conditions?
 - NSTX goal: assess high flux expansion, detached divertors, liquid metals
- 3. <u>Electron Transport</u>: What governs electron transport at low-A & low collisionality?
 - NSTX goal: determine modes responsible for electron turbulent transport and assess the importance of electromagnetic (high β) and collisional effects
- **4.** <u>Magnets</u>: Can we develop reliable center-post magnets and current feeds to operate reliably under substantial fluence of fusion neutrons?
 - NSTX goal: develop and utilize higher performance toroidal field magnet

Performance gaps between present and next-step STs

For NHTX, ST-CTF scenarios: reduce n_e , increase NBI-CD, confinement, start-up/ramp-up For ST-DEMO scenarios: increase elongation, β_N , f_{BS} , confinement, start-up/ramp-up

Present high β _N & f _{NIC}	D NSTX	NSTX Upgrade	NHTX	ST-CTF	ST-DEMO
Α	1.53	1.65	1.8	1.5	1.6
κ	2.6-2.7	2.6-2.8	2.8	3.1	3.7
β _T [%]	14	10-16	12-16	18-28	50
β_N [%-mT/MA]	5.7	5.1-6.2	4.5-5	4-6	7.5
f _{NICD}	0.65	1.0	1.0	1.0	1.0
f _{BS+PS+Diam}	0.54	0.6-0.8	0.65-0.75	0.45-0.5	0.99
f _{NBI-CD}	0.11	0.2-0.4	0.25-0.35	0.5-0.55	0.01
f _{Greenwald}	0.8-1.0	0.6-0.8	0.4-0.5	0.25-0.3	0.8
H _{98y2}	1.1	1.15-1.25	1.3	1.5	1.3
ν* _e	0.15	0.04	0.01	0.002	0.007
	Dimens	sional/Device Pa	rameters:		
Solenoid Capability	Ramp+flat-top	Ramp+flat-top	Ramp to full I _P	No/partial	No
I _P [MA]	0.72	1.0	3-3.5	8-10	28
$B_{T}[T]$	0.52	0.75-1.0	2.0	2.5	2.1
R_0 [m]	0.86	0.92	1.0	1.2	3.2
a [m]	0.56	0.56	0.55	0.8	2.0
I _P / aB _{T0} [MA/mT]	2.5	1.8-2.4	2.7-3.2	4-5	6.7

Near-term highest priority is to assess proposed ST-CTF operating scenarios

Gaps between present and future STs motivate NSTX scientific priorities and associated upgrades

- 1. Increase and understand beam-driven current at lower n_e , v^*
 - Next-step STs require full NICD to achieve missions, and NBI-CD is largest gap
 - But, lower n_e, v* also impacts AE avalanches, transport, MHD, pedestal, ELMs
 - → Test increased NBI-CD with density reduction, higher T_e, higher NBI power
- 2. Increase and understand H-mode confinement at low v*
 - ST energy confinement in particular electron energy confinement not sufficiently well
 understood to make extrapolation to next-steps with high confidence
 - \rightarrow Determine modes responsible for transport, determine scaling vs. B_T , I_P , P_{HEAT}
- 3. Demonstrate and understand non-inductive start-up and ramp-up
 - Non-inductive ramp-up essential to ST-CTF and ST-DEMO
 - Increased non-inductive start-up current must also be demonstrated
 - \rightarrow Increase ramp-up heating power & current drive to test I_P ramp-up technique
- 4. Demonstrate and understand means to "tame the plasma-material interface"
 - Short-pulse pumping needed near-term, longer-pulse pumping + heat-flux mitigation in upgrade
 - PMI solution for very high particle/heat/neutron flux needed for ST-CTF and ST-DEMO
 - → Develop means for particle control in H-mode (such as LLD), extend to long pulse, higher P/R
- 5. Sustain β_N and understand MHD near and above no-wall limit
 - Operation at no-wall limit assumed as baseline for NHTX and ST-CTF designs
 - Increased β_N , κ increases f_{BS} , β_T would enhance ST-CTF, needed for ST-DEMO
 - \rightarrow Improve control of β , RWM/EF, rotation and q profiles to optimize stability

Near-term (FY2009-11) upgrades support highest priorities and enable key research thrusts:

- FY2009-11: Upgraded fast wave heating for ramp-up, sustainment
 - Antenna modified to double RF power, ELM resilience for heating in H-mode
 - Ramp-up is critical issue for future ST devices
 - Utilize strong electron heating for self-generated "bootstrap" current ramp-up
 - Wave coupling/heating physics in advanced ST H-mode scenarios, ITER

- FY10 Access new physics regimes by utilizing a novel particle pumping technique: Liquid Lithium Divertor (LLD)
 - Will study impact of reduced collisionality and liquid lithium on edge energy and particle transport, and edge stability
 - Solid Li coatings previously led to transient pumping, improved energy confinement, ELM reduction/elimination

- FY10 First low-k turbulence data w/ Beam Emission Spectroscopy (BES)
 - Expand turbulence measurements to cover full k-range
 - Long term goal: determine and understand modes responsible for anomalous transport

- FY11 MSE-LIF for pitch angle & |B| w/o heating beam, E_r(r)
 - Greatly expanded flexibility for all topical science areas
 - Especially beneficial for HHFW, energetic particle research
 - q(r) during RF-only heating, reconstruct NBI fast-ion p from total thermal

NSTX FY2009-11 Research Milestones

(base and incremental)

FY2009	FY2010	FY2011		
Expt. Run Weeks: 14 (20)	15 (20)	15 (20)		
1) <u>Transport & Turbulence</u>		Study turbulence regimes responsible for ion and electron energy transport (formerly FY2010)		
2) Macroscopic Stability				
Understand physics of RWM stabilization & control vs. rotation	Assess sustainable beta and disruptivity near and above the ideal no-wall limit.	Assess sustained operation above the no-wall limit at reduced collisionality		
3) <u>Boundary Physics</u>	Assess H-mode characteristics as a function of collisionality and lithium conditioning	Relationship between lithiated surface conditions and edge and core plasma conditions		
4) Wave-Particle Interaction				
Study how j(r) is modified by super-Alfvénic ion-driven modes	Characterize HHFW heating, CD, and ramp-up in deuterium H-mode Joint milestone w/ solenoid-free TSG	Assess predictive capability of mode-induced fast-ion transport		
5) Solenoid-free start-up, ramp-up				
6) Advanced Scenarios & Control Perform high-elongation wall- stabilized operation at lower n _e Integrate MHD mode modification of		Dependence of integrated plasma performance on collisionality (FY2010 incremental accelerates this by 1yr if		
j(r) into optimized operation		LLD and/or HHFW achieve FY2010 goals)		

Joint Research Targets (3 US facilities):

Particle control and hydrogenic fuel retention

Understanding of divertor heat flux, transport in scrape-off layer

TBD (...Characterize H-mode pedestal structure...)

Run time/schedule priority will be given to milestones List below is prioritized based on relative importance of gaps

- Key capabilities & upgrades utilized for milestones are shown in (red)
- Note that all milestones below are "high priority", since milestones are allocated as much run-time as is needed (within reason) to achieve their goal

FY2009 Milestones

Joint	Particle control and hydrogenic fuel retention in tokamaks	(Li, sample probe)
1.	Perform high-elongation wall-stabilized operation at reduced n _e	(Li, NBI control)
2.	Study how j(r) is modified by super-Alfvénic ion-driven modes	(Fast-ion D-alpha)
3.	Understand physics of RWM stabilization and control vs. rotation	(NBI control, NTV braking)

FY2010 Milestones

Joint	Understanding of divertor heat flux, transport in scrape-off layer	(Div. bolom & fast IR, LLD)
1.	Characterize HHFW heating, CD, and I _P ramp-up in H-mode plasmas	(Upgraded HHFW)
2.	Assess pedestal characteristics and ELM stability as a function of ν^{\star} & Li	(LLD, Li CHERs, sample probe)
3.	Assess sustainable $\boldsymbol{\beta}$ and disruptivity near and above ideal no-wall limit	(Improved β & mode control)

FY2011 Milestones

Joint	(TBD) Improve understanding of H-mode pedestal structure	(Higher-res MPTS)
1.	Dependence of integrated plasma performance on collisionality	(LLD, HHFW, MSE-LIF)
2.	Study turbulence regimes responsible for ion, electron energy transport	(BES, high k_{θ} , LLD)
3.	Relationship between lithiated surface & edge/core plasma conditions	(LLD, MAPP, div. spect.)

A "Lithium Research Thrust" has recently been formed to coordinate Li research on NSTX

Motivation:

- Need to better understand underlying physics of how Li impacts plasma
 - And how plasma and non-Li PFCs impact Li PFCs
- Impact of Li is cross-cutting
 - Cuts across all NSTX topical science areas, and several programs at PPPL

Goals:

- Develop integrated NSTX Li research plan 3 yr time horizon (FY09-11)
 - Increase emphasis on Li diagnostics, theory, simulation support
- Coordinate Li research plans between NSTX, LTX, theory

Leadership:

- C. Skinner (leader, NSTX rep coordinates NSTX expt Li program)
- R. Kaita (deputy LTX rep, NSTX Li diagnostics)
- D. Stotler (Li theory and modeling coordinator for NSTX and LTX)
- Meet with all TSG leaders as needed to capture cross-cutting issues

• Time-line:

- Initiate in parallel with TSGs this year, coordinate FY10 LLD research
- Run-time allocation under discussion (estimate: 4 run days / year)

Decreased density and collisionality (from LLD and/or higher T_e) will likely impact physics and plasma performance across all topical science areas

Macroscopic Stability

- RWM critical rotation and neoclassical viscous torques may increase at lower v_i

Transport & Turbulence

- Underlying instabilities (micro-tearing, CTEM, and ETG) scale differently versus v^*
- If $T_e(r)$ is set by a critical ∇T_e , H-mode confinement may be reduced at reduced n_e

Boundary Physics

- ELM Δ W increases at lower v_e * could impact confinement, plasma purity, divertor
- ELM stability may improve at lower v_e^* possible second-stability access
- Detachment for heat flux reduction will be more challenging at reduced SOL density

Wave-Particle Interactions

- AE avalanches may be more easily triggered at reduced n_e due to increased fast-ion pressure fraction resulting in possible fast-ion redistribution and/or loss
- Plasma Start-up, Ramp-up, Sustainment
 - NBI-CD and RF-CD efficiency for ramp-up are increased at reduced n_e, increased T_e
 - ST-CTF scenarios rely on reduced n_e and increased T_e to increase NBI current drive efficiency to achieve 100% non-inductive current fraction.

Increased temperature and duration needed to address key issues for toroidal plasma science, ITER, and next-step STs

- Higher field and current enable access to higher temperature
- Higher temperature reduces collisionality and increases efficiency of noninductive current-drive sources, and increases equilibration time
- New CS with $B_T = 1T$, $I_P = 2MA$ (with induction), $t_{flat-top} = 5s$ would provide:
 - Longer pulse to assess RF ramp-up, 100% non-inductive sustainment at ~1MA
 - Higher field to stably accept high power for edge heat/particle transport studies
 - Extended range of field, current, β , collisionality to obtain unique data to aid development of first-principles understanding of turbulent transport
 - Magnet operation at ~1T (vs. 0.55T), within factor of 2 of next-step STs

Modular design of NSTX enables removal of present CS and replacement with a new higher-performance CS

- Present CS has been removed and re-installed several times for maintenance and modifications
- New CS would have larger radius for increased conductor area and toroidal field current, while maintaining low aspect ratio A ~ 1.5
- Construction tolerance requirements are similar to present NSTX CS

Approximate outline of new Center-Stack

More tangential 2nd NBI would enhance heating & current-drive for start-up, sustainment, heat-flux, transport studies

More tangential 2nd NBI would provide:

- Up to 2 times higher current-drive efficiency, and current profile control
- Tests of NBI ramp-up to ~1MA
- World-leading capabilities for plasma boundary physics at high heat flux
- Increased heating power to access very high β at low collisionality important for fundamental studies of transport and global stability
- Overall, a highly flexible tool for toroidal physics research by varying current, heating, and torque profiles, and fast-ion distribution function $f(v_{\parallel}, v_{\perp})$

An NBI heating system available from TFTR could be moved to the NSTX test cell and installed next to the present NBI

- PPPL has extensive experience operating, maintaining, refurbishing NBI
- NBI is well understood and has provided reliable heating to high β values in NSTX

New CS will include additional PF coils for "X-divertor", and higher B_T enables q_{min} control using n_e to control NBI-CD

Additional divertor coils for very high flux expansion (up to 60) exhaust onto LLD in outboard "X-divertor" configuration

 q_{min} > 1 achievable using existing 3 NBI sources (100keV, 7.5MW) + additional 4MW of HHFW for H₉₈ = 1.2-1.4, β_N = 4.5-5, β_T = 10-12%

2^{nd} NBI needed to support long-pulse (5s) fully non-inductive scenarios at high power at full TF (B_T = 1T)

- NBI duration 5s for 80kV → 5MW total per NBI, ~2s limit for ~7MW
 - 2nd NBI can double maximum power or double duration at fixed power
- Fully non-inductive scenarios require 7-10MW of NBI heating for $H_{98} \le 1.2$
 - τ_{CR} will increase from 0.35 → 1s if T_e doubles at lower n_e , higher B_T
 - Need 3-4 τ_{CR} times for J(r) relaxation
 → 5s pulses → need 2nd NBI
 - $-f_{GW} > 0.7$ needed at higher P_{NBI} to reduce core J_{NBICD} to maintain $q_{min} > 1$

Above: β_N =5, β_T =10%, I_P =0.95MA β_N =6.1, β_T =16%, q_{min} > 1.3, I_P =1MA at B_T =0.75T also possible

 2^{nd} NBI + 1T \rightarrow study transport, stability (especially NTM) of high q_{min} plasmas for NHTX, ST-CTF

2^{nd} NBI also needed to support long-pulse (5s) high- I_P partial-inductive scenarios at high-power at full TF (B_T = 1T)

- Higher current expected to expand range of accessible T and v^*
 - Accessible v^* will depend on how confinement scales at higher field and current
- Access to higher current important for variety of physics issues examples:
 - High- β_T physics at lower v^* (RWM, NTV) requires access to high I_P/aB_T
 - Core transport and turbulence at reduced ν^* , reduced $\chi_{i\text{-neoclassical}}$
 - Pedestal transport/stability, SOL width, heat flux scaling vs. current, ...
- High $I_P = 1.6MA$ and $B_T = 1T$ partially-inductively driven scenarios identified:
 - f_{NICD} = 65% with $q_{min} > 1$, $\beta_N = 5$, $\beta_T = 14\%$, NBI profile computed with TRANSP
 - Similar to present high NI-fraction discharges, but with 2× field and current
 - Higher current possible with present PF systems if I_i < 0.5
 - − These scenarios also require \geq 8MW of NBI heating power for H₉₈ \leq 1.2
- Solenoid in new CS and PFs being designed to support 2MA plasmas for 5s

Design and R&D in FY 09-11 for CS & NBI Upgrades

Without Funding Constraints for FY 10 and beyond

Center Stack Upgrade

Upgrade

2nd NBI

Conceptual Design to Retire Technical Risks Perform Critical Designs and R&Ds Upfront

Reliable, robust CS TF joint design at 1T

Present TF joint design

Candidate new TF joint design

- Simplification
- 36 identical turns
- Self-closing joints

Appropriate structures enhancement for 1T, 2 MA operations

Relatively simple structure enhancement brought down the stress to acceptable level

- NBI beam box tritium decontamination
 - Initial decontamination assessment has started in the TFTR Test Cell

NSTX participation in International Tokamak Physics Activity (ITPA) benefits both ST and tokamak/ITER research

Actively involved in 18 joint experiments – contribute/participate in 33 total

MHD, Disruption Control

• MDC-3 Joint experiments on neoclassical tearing modes (including error field effects)

MDC-12 Non-resonant magnetic breaking

MDC-14 Rotation effects on neoclassical tearing modes

MDC-15 Disruption database development

Transport and Confinement

TC-1 (was CDB-2) Confinement scaling in ELMy H-modes: beta degradation
 TC-2 (was CDB-10) Power ratio – Hysteresis and access to H-mode with H~1

• TC-4 (was CDB-12) H-mode transition and confinement dependence on ionic species

• TC-10 (was TP-7) Experimental ID of ITG, TEM and ETG turbulence + comparison w/ codes

• TC-15 Dependence of momentum and particle pinch on collisionality

Energetic Particles

• EP-2 Fast ion losses and Redistribution from Localized Losses

Pedestal and Edge Physics, Divertor, Scrape-off Layer

PEP-6 Pedestal structure and ELM stability in DN

• PEP-19 Edge transport under the influence of resonant magnetic perturbations

• PEP-25 Inter-machine comparison of ELM control by magnetic field perturbations from midplane RMP coils

• DSOL-17 Cross machine comparisons of pulse-by-pulse deposition

• DSOL-21 Introduction of pre-characterized dust for dust transport studies in divertor and SOL

Integrated Operation Scenarios

IOS-4.1 Access conditions for hybrid with ITER-relevant restrictions

• IOS-5.1 Ability to obtain and predict off-axis NBCD

• IOS-5.2 Maintaining ICRH coupling in expected ITER Regime.

Previous examples of NSTX contributions to ITPA for ITER:

- Transport: β -dependence of H-mode confinement important to ITER advanced scenarios ($B\tau_{98v2}\sim\beta^{-0.9}$)
 - NSTX performed β -scan (factor of 2-2.5) at fixed q, B_T
 - Degradation of $τ_E$ with β weak on NSTX for strongly shaped plasmas, stronger for more weakly shaped plasmas
 - Implies shape and/or ELM-type influences $\boldsymbol{\beta}$ dependence of H-mode confinement scaling

- MHD: Reduced normalized external inductance of low-A explains difference in I_P quench-rate
 - Implies tokamaks & STs have similar T_e during I_P quench phase (impurity radiation dominates dissipation of plasma inductive energy)

Area-normalized (left), Area and L_{ext} -normalized (right) I_n quench time vs. toroidal J_n (ITER DB)

Pre-Disruption Current Density (MA/m²)

NSTX FY09-11 support of ITER high priority research

- Impact of He (and possibly H) operation on H-mode
 - Important for H-phase of ITER operation
 - NSTX: Examine L→H threshold, global confinement, ELM stability
- ELM modification, suppression, control
 - Important for high fusion gain goal of ITER, essential for DEMO
 - Understand NSTX ELM modifications:
 - ELM stabilization with Lithium
 - ELM destabilization of with resonant magnetic perturbations (RMP)
 - RMP ELM control at lower q_{95} , reduced v^* (HHFW, LLD), consider vertical jogs
- Validate neoclassical toroidal viscosity (NTV) flow damping theory
 - Important for minimizing mode locking during ITER RMP ELM control
 - NSTX: Additional expt/theory comparisons at varied v*, rotation, RMP spectrum
- Simulation of ITER test blanket module impact on plasma
 - Important for understanding impact of large predicted error fields
 - NSTX: Use EF/RWM coils to approximate TBM spectrum

NSTX will make world-leading contributions to ST development, and contribute strongly to ITER and fundamental toroidal science

•The FY09-11 plan:

- Focuses research to address key gaps in extrapolating to next-step STs
 - Increase and understand beam-driven current at lower n_e , v^* (also assess integration)
 - Increase and understand H-mode confinement at low ν*
 - Demonstrate and understand non-inductive start-up and ramp-up
 - Demonstrate and understand means to "tame the plasma-material interface"
 - Sustain β_N and understand MHD near & above no-wall limit
- Contains substantial and targeted upgrades:
 - FY09-11 Improved HHFW for e-heating and CD for ramp-up & sustainment
 - FY10 Liquid Lithium Divertor (LLD) for lower n_e and v^* , BES for transport & Alfvén modes
 - FY11 MSE-LIF for q(r) w/o heating NBI, |B| for total (& fast-ion) pressure, improved MPTS
- These plans and upgrades enable exciting new science in all topical science areas:
 - Measure & understand underlying instabilities that cause anomalous energy transport
 - Understand RWM critical rotation and viscous torques and dependence on lower ν_i
 - Understand role of v^* and Lithium on pedestal transport/stability and divertor physics
 - Develop predictive capability for fast-ion redistribution from multi-mode AE for ST, ITER
 - Integrate CHI into normal ops, develop/understand I_P ramp-up w/ HHFW BS overdrive
 - Push toward 100% non-inductive operation by increasing NBI-CD w/ reduced collisionality

