LTX status

LTX is still in the commissioning phase

LTX

- First plasma: 3 October, 2008.
- First operating phase designed to deal with startup issues
 - » Employing smaller OH capacitor bank from CDX-U
- Measurement, modeling of null formation and PF rampup with thick copper shell
 - » LTX is first ST in world, first tokamak in U.S., with nearly full copper shell
- In parallel, progressing on new OH power supply
 - 28 current sharing transformers approaching completion
 - White paper on P.S. prepared, sent to ITER (P.S. is candidate to power internal PF coils)
- Preparing 5.8 GHz ECH source to aid startup
- Identified problem with existing TF joints
 - Existing (CDX) design from early 90s
 - Problems appear to be associated with new, rigid bracketing of TF coils
- Fix identified, tested, ready to go
- Exceeds requirements for full TF, OH current ops
- ◆ Review tomorrow, ~ 1 week to install

LTX research program for FY09-11

- Introduce lithium 20g (evaporative coatings) \Rightarrow 100-200g (pool in lower shell)
- Investigation of spherical tokamak equilibria with a very low recycling coefficient and pulsed gas fueling
 - Fuel with SGI (existing) and a molecular cluster injector (new)
 - » Cluster injector presently in design, engineering phase
 - » Based on system implemented in HL-2M
- Employ 140 channel magnetics system, Thomson scattering
 - Global confinement, T_e profile
 - Current profile
- Employ 2 channel interferometer, pulsed fueling
 - Particle transport
 - Add digital holography in FY10-11
- Additional thrusts in FY10-11
 - 100 kW pulsed EBW for heat pulse propagation
 - Edge Thomson for near-wall T_e gradient
- Full toroidal field, plasma current aid confinement studies
 - Requires completion of OH power supply

 $\sim 50 \text{ msec}$ at 400 kA, $V_L = 0.25 V$, 3.2 kG

Fit to all CDX lithium data: $1.7 \times ITER98P(y,1)$

Present plan is to implement NBI starting in FY11

NCSX diagnostic beam (downrated to 15 - 20 keV, 5A, 1 sec)

- Provide CHERS, initial ion heating results
- Small beam footprint, compact system for installation in present test cell
- Install in combination with moly coated shell (SBIR funded effort)
- ◆ ASTRA modeling shown for 100 kW NBI
 - Requires gas puffing to sustain density
- V_{loop} decreases to 0.25 V
- $T_i(0)$ increases to 1.6 keV
 - $T_i \sim T_e$
 - τ_E to 60 ms (ASTRA)
- Wider accessible parameter range
 - v^* reduced to 0.01 0.1
 - Higher density operation
 - » Combine with molecular cluster injection

Further plans

- Detailed investigation of PMI with liquid lithium walls
- PMI investigations with a hot high-Z wall
 - Proposed collaboration with Purdue University, University of Illinois
 - Performed after installation of moly coated wall, before lithium
 - LTX will have first full, 500 °C, high Z wall
- Joint NSTX, LTX experiments:
 - Plasma-material interactions
 - » H retention, recycling
 - » Sputtering, thermal (evaporative) limits
 - Confinement with low recycling walls
 - Electron transport
- Move to full core fueling with NBI in LTX
 - − Full fueling possible with two 8-12 keV, 15A, 500 msec Budker Institute beams » τ_p = 60 msec, 30 A beam current, 0.8 m³ volume ⇒ $< n_{beam} > \sim 1.4 \times 10^{19}$ m⁻³
 - Small volume of LTX permits access to high beam ion population
 - » Impractical without low recycling walls to eliminate charge exchange losses
- Stability with conducting wall at $r \sim 1.02a$

