Supported by


NSTX Research Plan – FY03-05

NSTX research advances Configuration Optimization, Fundamental Understanding, And High Performance/Burning Plasmas

Martin Peng

Oak Ridge National Laboratory, UT-Battelle, LLC on assignment at Princeton Plasma Physics Laboratory

For NSTX National Research Team

March 18-19, 2003 Gaithersburg, Maryland

Columbia U Comp-X GA INEL **JHU** LANL LLNL Lodestar MIT **Nova Photonics** NYU **ORNL PPPL** PSI SNL **UC Davis UC Irvine UCLA UCSD U** Maryland **U New Mexico** U Wash **U Wisc UKAEA Fusion** Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo Frascati, ENEA loffe Inst TRINITI

U.S. Collaborative NSTX Team members make crucial contributions

Institution	Research Topic	Institution	Research Topic	
Columbia U	MHD stability & mode control Stellar x-ray spectroscopy*	Comp-X	CQL-3D kinetic modeling of RF heating & current drive	
GA	CHI equilibrium, RF physics	INEL	Tile surface & dust analysis*	
	Plasma control	Johns Hopkins U	USXR tomography & diagnostics	
LANL	Visible and infrared imagingCHI plasma stability modeling	LLNL	Edge SOL modeling Edge plasma turbulence	
Lodestar	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Stellar x-ray spectroscopy*	
tur	turbulence	MIT	ECW-EBW modeling	
Nova Photonics	• MSE – CIF & LIF*		HHFW modeling	
	Ultra-fast imaging (~10 ⁶ /s)*	ORNL	RF launcher & experiments	
NYU	Transport & RF modeling*		ECH-EBW launcher & exp.	
PSI	• Ultrafast imaging (~10 ⁶ /s)*		Edge exp.; transport modeling	
UC Davis	FIReTIP & fluctuations	SNL	Plasma-facing material*	
UCSD	Fast probe, HHFW modeling		Material surface analysis*	
	Far SOL turbulent transport	UCLA	Reflectometry & fluctuations	
U. Washington	CHI research	U Maryland	Transport & turbulence sim.*	
U Wisconsin	NSTX neoclassical modeling	U New Mexico	Fast ion-plasma interactions	

^{*} Research cooperation funded by Theory, Technology, Diagnostic Innovations, SBIR, Plasma Science Programs

NSTX has advanced far into the new PoP ST physics regime, thanks to the available tools & capabilities

Transport &	• NBI: $H_{97L} \rightarrow 2.7$ (L and H-mode); $H_{98y,2} \rightarrow 1.5$ (sustained)
Turbulence	• NBI: χ_i < χ_{neo} , χ_e >> χ_i , T_i ~ $2T_e$, stiff T_e with strong V_{ϕ} & V_{ϕ} shear
	• HHFW: $H_{97L} \sim$ 1, T_e -profile modified – electron ITB ($T_e \rightarrow 3.7 \text{ keV}$)
MHD	• $\beta_T \rightarrow 35\%$; $\beta_N \rightarrow 6$; $\beta_p \rightarrow A$; $\beta_N \rightarrow 10\ddot{Q}$
	• RWM: $\beta \to 1.3~\beta_{\text{no-wall}}$ for > $20\tau_{\text{wall}}$, coupled to V_{ϕ} and nearby conductors
	 V_φ/V_{Alfvén} ~ 0.3, n_e asymmetry measured consistent with theory
	Revealing features in fast ion driven modes: TAE, CAE, etc.
Startup &	 HIT-II converted I_{CHI} to I_{OH}; NSTX CHI absorber improved for testing
Sustainment	First indication consistent with HHFW current drive expectations
	 V_L reduced to ~ 0.1 – 0.2 V via large bootstrap current (NBI, HHFW)
	• $\beta_T \rightarrow$ 17%, $\beta_N \rightarrow$ 5, $\beta_p \rightarrow$ A, $f_{BS} \sim$ 0.5, $V_L \sim$ 0.1 V, for > τ_{skin} & in 1-s pulse
Boundary	Gas Puff Imaging & scanning probe: intermittent filamentary blobs
Physics	Verified inboard SOL flux tube expansion due to low A
Integrated	• β_T ~ 35%, β_N ~ 5.4, H_{89P} ~ 1.5 simultaneously sustained for $\geq \tau_E$
Scenarios	TRANSP, TSC, M3D, RF codes, etc. used in NSTX research

NSTX research milestones have been organized to carry out and support 3 of the 4 IPPA MFE Thrusts

Fundamental Understanding (IPPA 3.1)

Advance understanding of plasma, the fourth state of matter, and enhance predictive capabilities, through comparison of well-diagnosed experiments, theory and simulation.

Configuration Optimization (IPPA 3.2)

Resolve outstanding scientific issues and establish reduced-cost paths to more attractive fusion energy systems by investigating a broad range of innovative magnetic confinement configurations.

High-Performance/Burning Plasmas (IPPA 3.3)

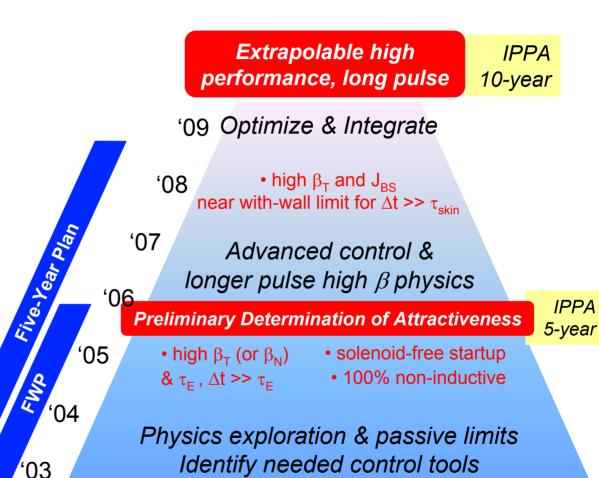
Advance understanding and innovation in high-performance plasmas, optimizing for projected power-plant requirement; and participate in a burning plasma experiment.

- A set of *Implementation Approaches* was determined by the IPPA to meet the 5-year Objectives of these thrusts.
- NSTX research milestones are organized to address them.

Research planned for FY03-05 aims to achieve the initial goals of the NSTX 5-year plan

• 5-year plan (FY04-08)

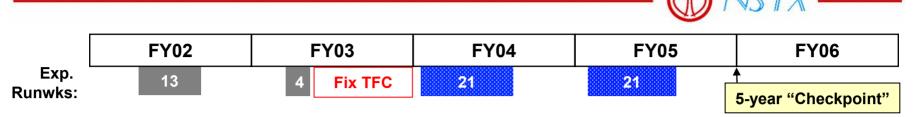
Establish physics
 basis for optimization
 and integration of
 extrapolable high
 performance & long
 pulse


• FY03-05 plan

 Complete preliminary determination of ST attractiveness

Both

- Advance control tools
- Implement key measurements
- Carry out supporting analyses
- Extend pulse lengths and key parameters


'02

Proof of Principle Science

BPM, 3/18-19/03

NSTX research address IPPA Thrust 5-year objectives through the ST Implementation Approaches (3.2.1.1–7)

3.2.1.1. Achieve efficient heat and particle confinement (3.1.1. Transport & Turbulence)

3.2.1.2. Verify stability of large-scale MHD perturbations (3.1.2. Macro Stability; 3.3.2. Hi-β Stability & Disruption)

Study MHD modes Assess plasma & Study plasmas near without feedback rotation interactions "with-wall" limit

3.2.1.3. Heat high-beta over-dense plasmas & drive current (3.1.3. Wave-Particle Interactions; 3.3.3. Burning Plasmas)

Test HHFW CD Characterize EBW efficiency Characterize EBW measure ΔJ from Demonstrate emission, est. H&CD RF, NBI & ∇p $J_{NI} = 100\%$

3.2.1.4. Test plasma startup & sustainment with noninductive techniques (3.1.3. Wave-Particle Interactions)

Test CHI Extend & analyze Test current startup sustainment to 1s initiation

3.2.1.5. Disperse edge heat flux at acceptable levels (3.1.4. Plasma Boundary Physics)

Analyze edge Characterize edge heat fluxes of H-mode plasmas

3.2.1.6. Integrate high confinement and high beta (3.3.1. Profile Control)

Characterize high Assess hi $\tau_{\rm E}$ & hi $\beta_{\rm T}$ Assess combined $\beta_{\rm T}$ & $\tau_{\rm F}$ for > $\tau_{\rm F}$ H-mode for >> $\tau_{\rm F}$ RF & NBI effectiveness

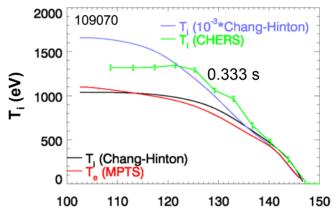
3.2.1.7. Explore spherical torus issues in directed laboratory experiments (3.1.5. General Plasma Science)

Pegasus, HIT-II, CDX-U – explore new ST parameter space & technologies MAST collaboration – EBW H&CD, boundary physics, confinement scaling, H-Mode and ELM physics

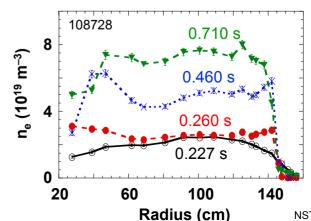
New capabilities are planned to unravel the exciting science behind transport & turbulence surprises

FY02	FY03	FY04	FY05

3.2.1.1. Achieve efficient heat and particle confinement (3.1.1. Transport & Turbulence)


Assess effects of high β & flow on γ

Measure low-k turbulence


Measure hi-k turbulence

- Mystery: $\chi_i < \chi_{Neo}$ in L and H-modes
 - NBI: $\chi_e \gg \chi_i$ with $T_e \sim T_i/2$
 - HHFW: $T_e = 2-5T_i$ with electron ITB
- Key new effects to study
 - Large 1/A, β , β' , ρ^* , V_{ϕ} (~0.3 $V_{Alfvén}$), $V_{\phi'}$
 - Emerging electromagnetic turbulence
- Measure low-k and hi-k turbulence
 - Help solve χ_i mystery
 - Excellent lab plasma to study χ_a
- Tooling up:
 - Low-k: reflectometry with/without imaging, laser interferometry, probe
 - High-k: μw scattering (300, 900 GHz)
 - More & faster CHERS-spectroscopy
 - Simulation: GS2, GTC, GYRO

Observed Great Ion Confinement

in H-mode Plasmas

MHD studies aim to develop an understanding of the physics of β limiting modes to enable very high β_T , β_N & β_p

FY02 FY03 FY04 FY05

3.2.1.2. Verify stability of large-scale MHD perturbations (3.1.2. Macro Stability; 3.3.2. Hi-β Stability & Disruption;

3.3.3. Burning Plasmas)

Study MHD modes without feedback

Assess plasma & rotation interactions

Study plasmas near "with-wall" limit

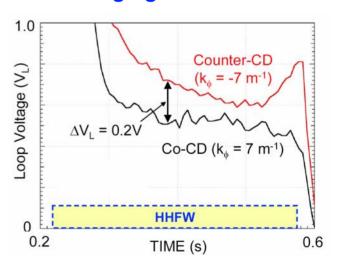
Much expanded stability space in FY02-03

- >10× reduced resonant field error → ~1%
- RWM exceeded "no-wall" limit for > τ_{wall}
- Benefits of κ , δ , ℓ_i , V_{ϕ} and plasma control?
- Field error reduced further, β_T up 15%
- New tools for FY04
 - Commission in-vessel mode sensors
 - Install ex-vessel RFC coils
- Test integration with high τ_F in FY04
 - Determine in-vessel RFC requirements
 - Prepare tests of "with-wall" limits in FY05
- Resolve NTM, locked mode questions
 - Avoid via high q_0 (q_{min}), κ , δ , low ℓ_i ?
 - Determine RFC control requirements
- Continue ELM, fast ion-MHD studies

BPM, 3/18-19/03

HHFW is being explored as a unique tool for electron heating, current drive, and confinement studies

	NSTX	
(A)		


	FY02	FY03	FY04	FY05	
3.2.1.3. Heat high-beta over-dense plasmas & drive current (3.1.3. Wave-Particle Interactions; 3.3.3. Burning Plasmas)					
Test HHFW CD Measure ∆J from Demonstrate					
	efficiency		RF, NBI & ∇p	J _{NI} = 100%	

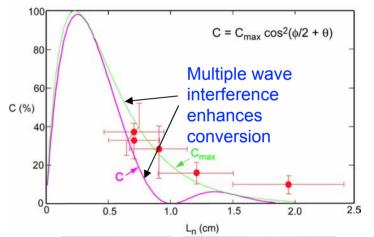
Characterize EBW emission, est. H&CD

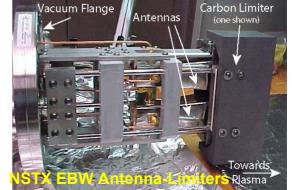
- Heats electrons effectively; CD suggested by V_L
- Verified predicted interactions with NBI ions
 - Important step toward HHFW + NBI scenarios
- Prepare for ∆J measurements in FY04
 - Commission multi-chord MSE CIF
 - CHERS, edge spectroscopy help resolve E_r, B_p
 - FIReTIP contributes; J_{NI} = 100% demo in FY05
- HHFW tooling up

- Feed-through & reliability improved for → 6 MW
- Fault detection, new center-fed strap in FY05
- RF Modeling & SciDAC
 - Improve ion heating model in ray vs. full-wave
 - Apply SciDAC full-wave 3D codes

Encouraging CD Indications

EBW studies will test the basis for local H&CD, NTM control, and initiation in over-dense ST plasmas


(0)	NICTEN	
	1 43 11 /1	117


	FY02	FY03	FY04	FY05		
3.2.1.3. Heat high-beta over-dense plasmas & drive current (3.1.3. Wave-Particle Interactions; 3.3.3. Burning Plasmas)						
	Test HHFW CD	Characterize EBW	Measure ∆J from	Demonstrate		
	efficiency	emission, est. H&CD	RF, NBI & ∇p	J _{NI} = 100%		

Encouraging EBW results

- Emission measured in CDX-U, NSTX, MAST, etc.
- H&CD: W-7AS, COMPASS-D
- Localized H&CD predictions
- Fast T_e(R,t) measurement?
- Much preparation needed
 - Collaboration on MAST (60 GHz, 1 MW)
 - Complete GENRAY-CQL3D scoping
 - Emission studies on NSTX in early FY04
 - Develop launch and propagation scenarios
- 1-MW EBW at ~ 15 GHz in FY06!
 - Working with VLT to procure in FY05

EBW Emission Agrees with Theory

Innovative noninductive startup and sustainment has made progress – very important to ST development

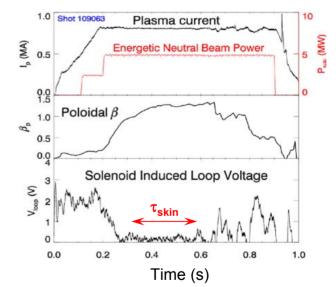
FY02 FY03	FY04	FY05
-----------	------	------

3.2.1.4. Test plasma startup & sustainment with noninductive techniques (3.1.3. Wave-Particle Interactions)

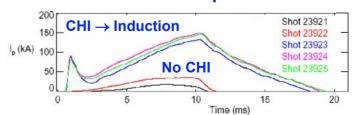
Test CHI startup

Extend & analyze sustainment to 1s

Test current initiation

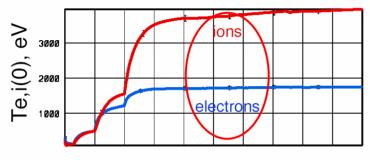

Long-pulse (~1s) H-mode results so far

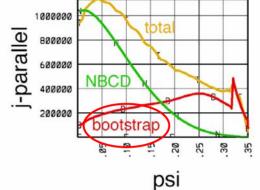
- − NBI (5-6 MW): 0.8 MA, $\epsilon\beta_p \le 1$, V_L ~ 0.1 V
- HHFW (3 MW): 0.4 MA, $\beta_D \le 1$, $V_L \sim 0.2 \text{ V}$
- Extensive analysis in FY03; startup delayed

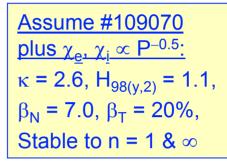

Test solenoid-free initiation in FY04-05

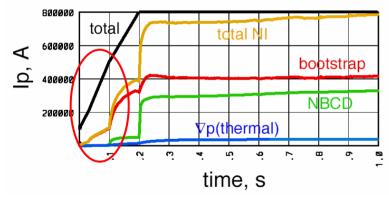
- Encouraged by existing results
- HIT-II: CHI → Induction → add HHFW
- MAST, JT-60U: VF flux
- CDX-U, TST-2: tested ECH-EBW initiation
- MAST: collaboration (~1MW, 60 GHz)
- Analysis:
 - TSC, P-TRANSP, EFIT-J_{SOI}, 3D MHD
- Full EBW tests planned
 - 1 MW in FY06; up to 3 MW by FY08

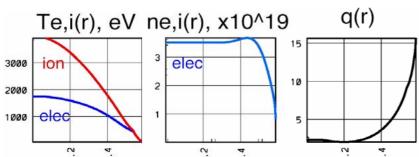
NBI Nearly Enabled Full Sustainment




CHI Plasma Was "Captured" in HIT-II




Simulations of J_{NI} = 100% plasmas identify scenarios and motivate important NSTX research topics


Identified Scenarios to Achieve Long Pulse Sustainment

ST research topics

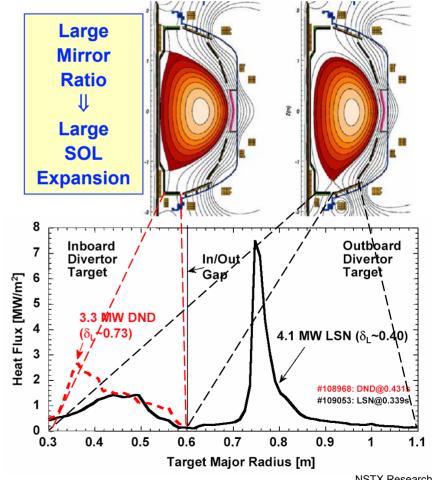
- Bootstrap J at low A
- HHFW heating in presence of NBI
- Scaling of χ_e , χ_i with $T_i >> T_e$
- Effects of large V_{φ} and V_{φ} shear on stability & transport

Scenario elements

- CHI or EBW I_p initiation
- Non-inductive I_p ramp-up
- Active particle control
- Relevance: sustained D-T ST plasmas

Boundary physics studies aim to test and develop solutions for high performance NSTX plasmas

FY02	FY03	FY04	FY05

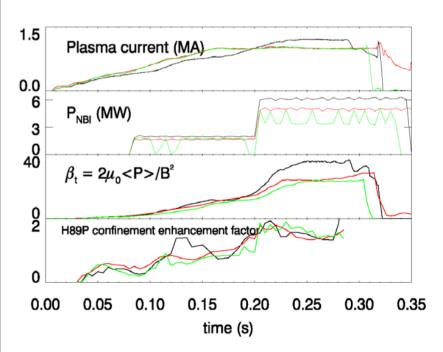

3.2.1.5. Disperse edge heat flux at acceptable levels (3.1.4. Plasma Boundary Physics)

Analyze edge heat fluxes

Characterize edge of H-mode plasmas

Study low A effects on SOL in FY03

- Mirror ratio increases flux expansion
- Edge turbulence minimal in H-mode
- Analyze and compare with modeling
- Design impact assessment delayed
- Support integrated high performance plasma tests in FY04
- Characterize H-mode edge in FY05
 - Several types of H-mode observed
 - L-H threshold results to shed new light
- New tools
 - Supersonic gas jet, lithium pellets
 - New fast probe head for kinetics & fluctuations
 - D2 pellets, cryo-pump?


Confinement and stability integration studies aim to test synergy among special ST properties

	FY02	FY03	FY04	FY05		
3.2.1.6. Integrate high confinement and high beta (3.3.1. Profile Control)						
		Characterize high	Assess hi τ_E & hi β_T	Assess combined		
		$\beta_T \& \tau_E \text{ for } > \tau_E$	H-mode for $>> \tau_E$	RF & NBI effectiveness		

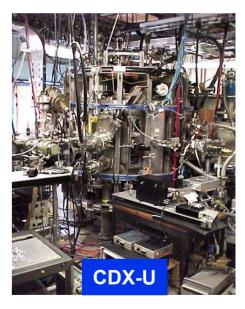
- Achieved simultaneous high τ_{E} and β_{T} without feedback for > τ_{E} in FY02-03
- Extended test in FY04
 - H-mode for $\Delta \tau >> \tau_F$
 - Improved density source and sinks
 - Ex-vessel RFC-coils and large V_{ϕ} to avoid or suppress RWM
- Extensive tools & measurements
 - NBI, HHFW, wall, plasma control
 - Mode $\delta \mathbf{B}$ sensors, USXR arrays
 - Fast calculation of β vs. $\beta_{\text{no-wall}}$
 - Feedback on $(\beta \beta_{no-wall})$
- Test HHFW-NBI integration in FY05
 - Required for further flat-top extension
 - Test HHFW as reliable tool

Important Progress in β - τ Integration

$$I_p = 1 - 1.2$$
 MA, $P_{NBI} = 4 - 6$ MW, $\beta_T = 25 - 35\%$, $H_{89P} \sim 1.5$, $\Delta \tau \ge \tau_E$

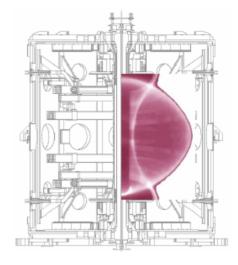
Pegasus, HIT-II (HIT-SI) and CDX-U plans to explore new ST parameter space and technologies

3.2.1.7. Explore spherical torus issues in directed laboratory experiments (3.1.5. General Plasma Science)


Pegasus, HIT-II, CDX-U - explore new ST parameter space & enabling technologies

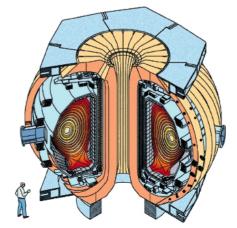
Pegasus plans

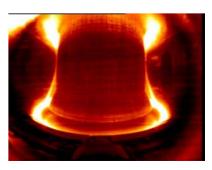
- MHD stability as R/a \rightarrow 1
- EBW physics in very over-dense plasmas
- Physics connections with Spheromak
- HIT-II (HIT-SI) plans
 - Steady helicity injection
 - Explore NSTX CHI improvements ideas
- CDX-U plans
 - Lithium surface-plasma interactions
 - Support development of Liquid-Surface Module for NSTX in collaboration with VLT



ST physics relevance to High Performance/Burning Plasmas has led to broad international collaborations

- Merging database with MAST, U.K.
 - NBI H-mode, transport, τ_E
 - EBW H&CD (1 MW, 60 GHz), FY03
 - Divertor heat flux studies, FY03-04
 - NTM, ELM characterization
- Exploratory ST's in Japan
 - TST-2: ECW-EBW initiation
 - **TS-3,4**: FRC-like β ~1 ST plasmas
 - HIST: helicity injection physics
 - LATE: solenoid-free physics
- MST: electromagnetic turbulence, EBW
- Began participation in ITPA (ITER)
 - A and β effects: H-mode, ITB, ELM's
 & pedestal, SOL, RWM, and NTM
- DIII-D & C-Mod collaboration
 - Joint experiments on RWM, Fast ion MHD, pedestal, core confinement, edge turbulence


MAST (U.K.)


MST (U.S.)

DIII-D (U.S.)

C-Mod (U.S.)

NSTX proposes aggreesive research in FY04-05 to contribute to IPPA thrusts for FES

- Growing National Research Team contribute to
 - Configuration Optimization
 - Fundamental Science
 - Through ITPA High-Performance/Burning Plasmas
- Results advanced far into new PoP physics regimes
 - Max β_T = 35%, β_N = 6.7 %•m•T/MA (~ 10 ℓ_i)
 - High H-factors relative to ITER confinement scalings; $V_{\text{rotation}}/V_{\text{Alfven}} \sim 0.3$
 - Progress toward J_{NI} = 100%, $V_{L} \sim 0.1 \text{ V}$
- Organized to address IPPA Implementation Approaches & objectives, milestones determined for FY03-05.
- Growing international ST & Tokamak research cooperation

Next: Ono – NSTX Operation and Upgrade Plans

Backups

NSTX National Research Team & International Cooperation

- Princeton Plasma Physics Laboratory: M. Ono, E. Synakowski, S. Kaye, M. Bell, R. E. Bell, S. Bernabei, M. Bitter, C. Bourdelle, R. Budny, D. Darrow, P. Efthimion, J. Foley, G. Fu, D. Gates, L. Grisham, N. Gorelenkov, R. Kaita, H. Kugel, K. Hill, J. Hosea, H. Ji, S. Jardin, D. Johnson, B. LeBlanc, Z. Lin, R. Majeski, J. Manickam, E. Mazzucato, S. Medley, J. Menard, D. Mueller, M. Okabayashi, H. Park, S. Paul, C.K. Phillips, N. Pomphrey, M. Redi, G. Rewoldt, A. Rosenberg, C. Skinner, V. Soukhanovskii, D. Stotler, B. Stratton, H. Takahashi, G. Taylor, R. White, J. Wilson, M. Yamada, S. Zweben (CDX-U Cooperation) Oak Ridge National Laboratory: M. Peng, R. Maingi, C. Bush, T. Bigelow, S. Hirshman, W. Houlberg, M. Menon, * D. Rasmussen,* P. Mioduszewski, P. Ryan, P. Strand, D. Swain, J. Wilgen *University of Washington:* R. Raman, T. Jarboe, B. A. Nelson, A. Redd, D. Orvis, E. Ewig (HIT-II Cooperation) Columbia University: S. Sabbagh, F. Paoletti, J. Bialek, G. Navratil, W. Zhu General Atomics: J. Ferron, R. Pinsker, M. Schaffer, L. Lao, B. Penaflor, D. Piglowski (DIII-D Cooperation) Johns Hopkins University: D. Stutman, M. Finkenthal, B. Blagojevic, R. Vero Los Alamos National Laboratory: G. Wurden, R. Maqueda, A. Glasser*; Nova Photonics: F. Levinton Lawrence Livermore National Laboratory: G. Porter, M. Rensink, X. Xu, P. Beiersdorfer,* G. Brown* UC San Diego: T. Mau, J. Boedo, S. Luckhardt, A. Pigarov,* S. Krasheninnikov* UC Davis: N. Luhmann, K. Lee, B. Deng, B. Nathan, H. Lu; UC Los Angeles: S. Kubota, T. Peebles, M. Gilmore Massachusetts Institute of Technology: A. Bers, P. Bonoli, A. Ram, J. Egedal* (C-Mod Cooperation) UC Irvine: W. Heidbrink; Sandia National Laboratory: M. Ulrickson,* R. Nygren,* W. Wampler* Princeton Scientific Instruments: J. Lowrance,* S. von Goeler*; CompX: R. Harvey; Lodestar: J. Myra, D. D'Ippolito; NYU: C. Cheng*; University of Maryland: W. Dorland*; Dartmouth University: B. Rogers* U.K., Culham Fusion Center: A. Sykes, B. Lloyd, P. Carolan, R. Akers, G. Voss, H. Wilson (MAST Cooperation) JAPAN, Univ. Tokyo: Y. Takase, H. Hayashiya, Y. Ono, S. Shiraiwa; Kyushu Tokai Univ.: O. Mitarai; Himeji Inst of Science & Technology: M. Nagata; Hiroshima Univ.: N. Nishino; Niigata Univ.: A. Ishida; Tsukuba Univ.: T.
- Russian Federation, Ioffe Inst.: V. Gusev, A. Detch, E. Mukhin, M. Petrov, Y. Petrov, N. Sakharov, S. Tolstyakov, Dyachenko, A. Alexeev; TRINITI: S. Mirnov, I. Semenov (Globus-M Cooperation)

Korea, KBSI: N. Na (K-Star Cooperation)

Tamano (TST-2, HIST, TS-3, TS-4 Cooperation)

^{*}In cooperation with DOE OFES Theory, OFES Technology, Astrophysics, or SBIR programs

FY03 milestones updated to begin FY04-08 NSTX plan

FY 2002 2003 2004 2005 2006 13 21 21 **Expwks** 4 (Reduced \$. Fix TF) 21 FESAC 5-year Checkpoint? **Research Milestones to Address IPPA Implementation Approaches**

Pulsed High Directions Research

Performance:

$$\beta_T \sim 30\%$$
, $\beta_N \sim 5$,
HH ~ 1, $\tau_{\text{pulse}} > \tau_{\text{E}}$

Improved Diagnostics & Control

• $\beta_T = 40\%$, • $\beta_N = 8$, HH = 1.4, $\tau_{\text{pulse}} >> \tau_{\text{E}}$

Solenoid-Free Op.:

• $J_{NI} > 60\%$, $\tau_{pulse} \sim \tau_{skin}$,

Initiation & ramp-up demo

• J_{NI} = 100%, • $\tau_{pulse} > \tau_{skin}$,

Study plasmas near

"with-wall" limit

Solenoid-free to hi β.

- Study MHD modes (no feedback)
- Assess effects of high b_{τ} & flow on γ
- Test CHI startup
- Test HHFW current drive efficiency
- **★**Demonstrate innovative startup & sustainment

(★FES SC6-2 Strategic **Performance Target)**

- Assess plasma, δB_{c} ★Assess hi τ₌ and rotation interactions hi β_T H-mode
- Characterize hi "no-wall" β-/& hi $\tau_{\rm F}$ for $>> \tau_{\rm F}$
- Analyze startup & sustainment to 1 s
- Characterize EBW emission to estimate H&CD
- **☆Analyze edge heat flux** & assess impact

- Measure low-k turbulence
- Measure ∧J from RF, NBI, & ∇p
- Test current initiation
- **→•** (Jan/04

 Demonstrate $J_{NI} = 100\%$

Measure hi-k

turbulence

- Characterize edge of H-mode plasmas
- Assess combined **RF & NBI effectiveness**

Integration of hi performance & solenoid-free operation in FY07-08

(☆Science Subprogram Performance Target)

Running 10 weeks in FY05 delays program by 6 months

2004

2006

Expwks	13	4 (fix TFC)	21	10	21
Resear	ch Milestones	to Address IPPA Impl	ementation Appro	paches FE	ESAC 5-year Checkpoint?
⊼I ⊆II	ulsed High erformance:	$\beta_{T} \sim 30\%, \ \beta_{N} \sim 5,$ HH ~ 1, $\tau_{pulse} > \tau_{E}$	Improved Diagnostics		• β_{T} = 40%, • β_{N} = 8, HH = 1.4, $\tau_{pulse} >> \tau_{E}$
Rese Direc	olenoid- ree Op.:	• J _{NI} > 60%, τ _{pulse} ~ τ _{skin} , • Initiation & ramp-up den	& Control	• $J_{NI} = 100\%$, • τ_{pulse}	$_{\rm p} > \tau_{\rm skin},$ Solenoid-free to hi $\beta_{\rm p}$
	udy MHD modes o feedback)	Assess plasma & rotation interactions	\bigstar Assess hi τ_{E} and hi β_{T} H-mode	• Study plasmas no "with-wall" limit	Integration of hi performance & solenoid-free
_	sess effects of $_{J}h$ b_{T} & flow on χ	• Characterize hi "no-wall" β_T & hi τ_E for > τ_E	Measure low-k turbulence	 Measure hi-k turbulence 	operation in FY08-09

 Test HHFW current drive efficiency

innovative startup & sustainment

Test CHI

startup

FY

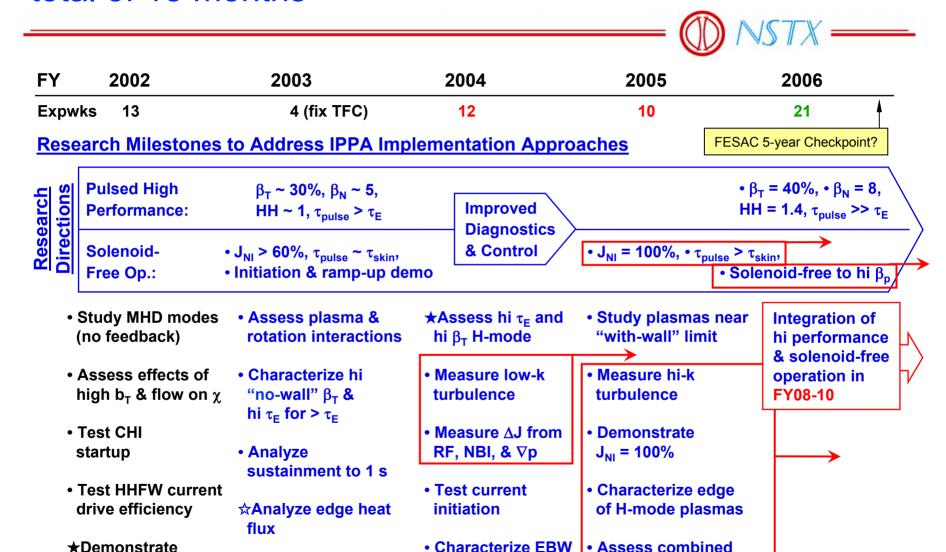
2002

2003

☆Analyze edge heat flux **★**Demonstrate

Analyze

sustainment to 1 s


- Measure ∆J from RF, NBI, & ∇p
- Test current initiation
- Characterize EBW emission to estimate H&CD

 Demonstrate $J_{NI} = 100\%$

2005

- Characterize edge of H-mode plasmas
- Assess combined **RF & NBI effectiveness**

Running 11 weeks in FY04 further delays program by a total of 18 months

BPM, 3/18-19/03

NSTX Research Plan

emission to

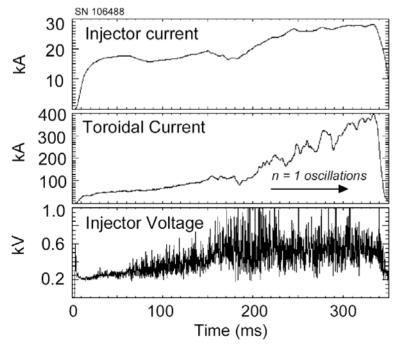
estimate H&CD

innovative startup & sustainment

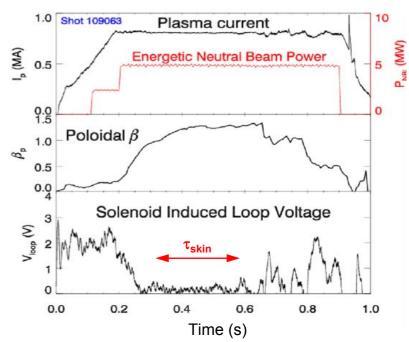
RF & NBI effectiveness

NSTX met its FY02 FES Configuration Optimization (SC6-2) Performance Target

	FY02	FY03	FY04	FY05		
3.2.1.4	3.2.1.4. Test plasma startup (& sustainment) with noninductive techniques (3.1.3. Wave-Particle Interactions)					
	Test CHI	*Extend & analyze	Test current			


initiation

FY02 Target: Demonstrate innovative techniques for initiating and maintaining current in a spherical torus.


sustainment to 1s

CHI Started Toroidal Current

startup

NBI Nearly Enabled Full Sustainment

Research in FY04-05 will be part of the Five-Year Plan (FY04-08) – toward integrating high performance & solenoid-free operation

	FY02	2	FY03	FY04	FY05	FY06	FY07	FY08
Five-Year Research	Pulsed F Performa Solenoid Free Op.	ance:	$\beta_{T} \sim 30\%, \ \beta_{N} \sim 5, \ HH \sim 1, \ \tau_{pulse} > \tau_{E}$ • J _{NI} > 60%, $\tau_{pulse} \sim \tau_{sk}$ • Initiation & ramp-up	Diagnostics & Control	$/ \cdot J_{NI} = 100\%, \cdot \tau_{pu}$	$ \bullet \beta_{\text{T}} = 40\%, \bullet \beta_{\text{N}} = 8, $ $ \text{HH} = 1.4, \tau_{\text{pulse}} >> \tau_{\text{E}} $ $ \bullet \text{Solenoid-free to hi } \beta_{\text{p}} $	Toward	$β_T = 40\%$ $β_N = 8$ > HH = 1.4 $J_{BS} = 70\%$ Δt >> $τ_{skin}$
3.2.1	2. Verify stabili Study MHD without fee	modes	e-scale MHD perturba Assess plasma & rotation interactions	tions (3.1.2. Macro Sta	bility; 3.3.2. Hi-β Stab Study plasmas ne "with-wall" limit			/
3.2.1	3.2.1.3. Heat high-beta over-dense plasmas & Test HHFW CD Characterize E emission, est.			Measure ∆J from	Particle Interactions; 3 Demonstrate J _{NI} = 100%	.3.3. Burning Plasmas)		
3.2.1.	4. Test plasma Test CHI startup	startup &	& sustainment with no Extend & analyze sustainment to 1s	ninductive techniques Test current initiation	(3.1.3. Wave-Particle	Interactions)		
3.2.1	5. Disperse ed	ge heat fl	ux at acceptable level Analyze edge heat fluxes	s (3.1.4. Plasma Bound	dary Physics) Characterize edge of H-mode plasma			
3.2.1	6. Integrate hig	th confine	ement and high beta (Characterize high β _T & τ _E for > τ _E	3.3.1. Profile Control) Assess hi τ _E & hi β _T H-mode for >> τ _E	Assess combined			

3.2.1.7. Explore spherical torus issues in directed laboratory experiments (3.1.5. General Plasma Science)

Pegasus, HIT-II, CDX-U – explore new ST parameter space & enabling technologies

MAST collaboration - EBW H&CD, boundary physics, confinement scaling, H-Mode and ELM physics