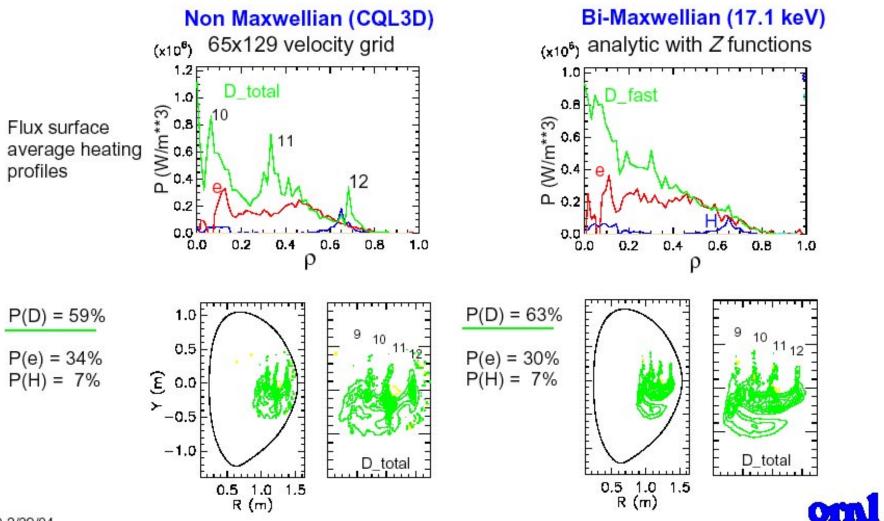
NSTX Team Meeting - Physics Analysis

March 25, 2004


C.K. Phillips, S. Kaye and J. Manickam

HHFW Heating and CD Modeling

- TRANSP & CURRAY Package :
 - Algorithm for power absorption has been modified to improve code reliability (Mau)
 - Ray marching algorithm upgraded to avoid "crash" problems found occasionally with NSTX and DIII-D simulations
 - New library of CURRAY routines, including upgrades to some I/o packages has been delivered to PPPL
- HHFW code development:
 - Development of non-Maxwellian species for plasma dielectric response in TORIC is continuing (SciDAC-related work)
 - AORSA code can now accept fast ion distributions from CQL3D (SciDAC)
 - (see NSTX test case next vg)
 - Renewal proposal to SciDAC, which indirectly supports some NSTX analysis, has been submitted to DOE

Power absorbed by fast deuterium ions is more localized than with the equivalent bi-Maxwellian

D+, <u>neutral beam injection only (NBI</u>) plasma in NSTX shot 108251, (A. Rosenberg, invited, 2003 RF meeting).

D3D 2/29/04

Transport Studies

- GS2 analysis (Redi)
 - Because of the poloidal extent of the converged microtearing mode eigenfunction, linear GS2 simulations were required to determine extended domains for adequate nonlinear calculations
 - Very large storage requirements appear necessary for nonlinear calculations of the tearing mode transport.
 - An acceptable size for the poloidal range is as high as seventeen 2*pi cells, rather than the usual one 2*pi cell used in ITG nonlinear simulations.
 - Discussions on non-linear calculations with W. Dorland are continuing

MHD and Equilibrium Studies

- EFIT-related development (Sabbagh)
 - time evolution data for midplane field components from EFIT data on the MDS+ tree being provided for use in MSE calibration.
 - significant compute time specification upgrades made to PHOENIX, including the ability to specify <1 ms compute times for NSTX EFIT
 - code can now set compute times based on arbitrary signals (e.g., plasma current)
 - time resolution now automatically optimized for between-shot runs
 - new reconstruction being developed with great structure detail, implementing new magnetic diagnostics from Menard
 - Green table built from this work will support rtEFIT.