

Research Operations Division Boundary Physics (H. Kugel)

- Lithium Pellet Injector fired into plasmas
 - ▶ Pellets passed through OH plasmas; ablated in edge of NB plasmas
 - Changed penetration by varying NB pellet timing
 - Some evidence for Li accumulation over several shots
- Performed first experiments with Supersonic Gas Injector (SSGI)
 - Highly collimated plume observed by fast cameras
 - Measured electron density increase
 - Edge Magnetic Sensors used in experiments on startup with PF4
 - ▶ Bay-I port will be enlarged for reliable reciprocal motion
- Performed post-run inspections of VV interior
 - Lithium residue observed in pellet strike zone on center stack
 - Surface being analyzed [Allain, ANL]

Research Operations Division Boundary Physics [2]

- Third IR camera received
 - View Upper Divertor to improve power accountability
 - 2 existing cameras view Lower Divertor and CS
 - Calibrate during bakeout
- Planning to install third deposition monitor for next run
- Planning for moveable-anode GDC system
 - ▶ Try to use the same drive & controls as SSGI Probe
 - Awaiting quotes and delivery information from vendor
 - Goal to have Design Review in about 2 weeks.
 - Existing Bay-K anode to be relocated to Bay-L for bakeout and backup

Research Operations Division Diagnostics (D. Johnson, R. Kaita)

- Obtained MSE data on 8 channels, 4 at a time, with 10ms resolution
 - Simultaneous channels limited by delivery of detectors
 - Substantially met FY'04 diagnostic milestone D(04-1)
 - Performed 'gas-filled torus' calibration
 - Pitch-angle data agrees quite well with EFIT some differences
 - ▶ Add 4 detectors before next run ⇒ 14 channels by end of FY'05 run
- Substantially met FY'04 diagnostic milestones: MSE D(04-1); ultra-fast tangential SXR camera - D(04-2)
- Obtained data with fast camera [Hiroshima U] on tangential divertor port
- Fluctuation diagnostics addressed Research Milestone FY04-2 –
 Measure long-wavelength turbulence in ST plasmas
 - Correlation reflectometers
- FIReTIP

GPI

Reciprocating edge probe

Research Operations Division Diagnostics [2]

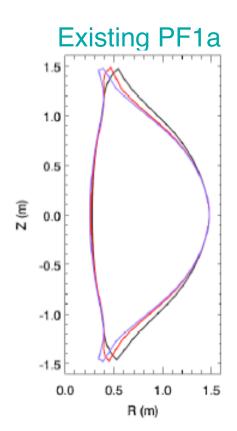
- Adding, upgrading, repairing diagnostics during outage
 - ▶ Additional 10 spatial channels for MPTS Milestone D(05-1) (9/05)
 - Polychromators, filters delivered from GA
 - Awaiting detectors and fabricating electronics
 - Should be operational but may be uncalibrated at start of run
 - Installing High-k microwave scattering
 - Milestone D(05-2) (9/05)
 - Carcinotron tested and detectors being assembled at UC Davis
 - Modifying Bay K port for detectors, Bay G & NB armor for input beam
 - Very tight schedule with respect to pumpdown
 - Priority of TF, PF1a, High-k has forced postponement of PCHERS installation and ERD upgrade
 - ► Fabricating new I_p rogowski coils
 - Replace one apparently damaged by heat during bakeout

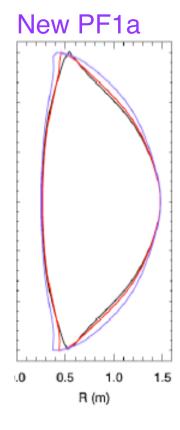
Research Operations Division Diagnostics [3]

- ▶ Repairing malfunctioning B_P, B_Z magnetic sensors and wiring
- Modifying ports at Bays G, I, K FDR on 10/11
 - Enlarging port for electron Bernstein wave antenna
 - Improving view for visible bremsstrahlung diagnostic
 - Additional clearance for SSGI and associated magnetic sensors
 - Rear view of pellet trajectory
- Need to define and schedule pre-operational diagnostic calibrations
 - Bob Kaita is compiling the list
 - Already has 11 calibration activities

Research Operations Division RF Systems (R. Wilson)

- Successful run: over 400 shots with HHFW
- Need to understand phasing dependence of heating efficiency
 - Parametric decay into waves absorbed near the plasma edge
 - Losses due to RF driven sheaths: near or far
 - Surface waves
- During opening:
 - Instrument passive plate Rogowski loops to detect sheath currents
 - ▶ Modify ORNL edge reflectometer to look for density fluctuations at f_{HHFW}
 - Parametric decay as well as 30MHz wave penetration
 - New rf probe electronics to measure time dependence of decay wave
 - ▶ Move outer antenna protective tiles in 5 mm to alter near sheaths
 - Also better protect from energetic beam ions


Research Operations Division Physics Operations (D. Mueller, D. Gates, R. Raman)


- Made first use of PF4 coil, RWM coil, CHI capacitor bank late in run
- Long list of upgrades to control system to prepare for FY'05 experiments
 - Add capability to control SPA for RWM coils
 - ▶ Including internal B_r, B_θ coils for real-time detection of RWM
 - Update coil (PF1a), vessel model in rtEFIT
 - ▶ Implement I_{TF}×I_{PF} interlock to reduce stress on TF flags joints
 - ▶ RF loading control (held over from last year)
- Desirable to implement controllable inner-wall gas feed
 - Investigating using a much larger pipe to upper shoulder
- Modifications being developed to improve breakdown for CHI
 - Inject ECH preionization and gas into lower divertor chamber

Taking Advantage of Removing TF Bundle to Perform PF1a Upgrade

- Five-Year Plan proposed modifying PF1a coils for high-triangularity, high-elongation operation to achieve high β_T
- Install new PF1a coils in this opening ⇒ Milestone F(05-3) (9/05)

- Two new 20 turn × 24kA coils avoid problems with existing PF1a
 - Permit high triangularity without reducing squareness and volume
 - Higher $I_N = I_p/aB_T$ at fixed q_{95}
- Fabricating coils in house
 - Conductor available
 - Procuring insulation
 - Preparing forms and curing oven
- Proceed to FDR when analysis and redesign of supports complete