

NSTX Program Update: BPM meeting summary 5 year plan schedule

J. Menard, PPPL

March 21, 2008 NSTX Team Meeting Princeton Plasma Physics Laboratory

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokvo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep U Quebec

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL IINI Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

NSTX Team Meeting - J. Menard

Prioritization of understanding and performance gaps Based on input from NSTX team (5yr plan), STCC discussions, PAC-23

Next-step ST's will have v^* **1–2 orders of magnitude lower than present ST's** \rightarrow Impacts many topical science areas: transport, MHD, boundary physics, fast-ion modes, etc.

- 1. Increase and understand beam-driven current at lower $n_e^{},\,\nu^*$
 - Next-step STs *require* full NICD to achieve missions, NBI-CD is largest gap
 - Need to test if decreasing $n_{\rm e}$ increases NBI-CD & non-inductive fraction as assumed
 - Test if high H_{98} , β_N , f_{BS} , and sufficient fast-ion confinement are achievable at reduced n_e
- 2. Increase and understand H-mode confinement at low ν^{\star}
 - Electron energy transport (to a lesser extent ion energy transport) not sufficiently well understood to make extrapolation to next-steps with high confidence
 - Need to better understand underlying physics of scalings
- 3. Demonstrate and understand non-inductive start-up and ramp-up
 - Non-inductive ramp-up essential to ST-CTF and ST-DEMO, benefits AT-DEMO
 - Non-inductive start-up also beneficial
- 4. Sustain β_N and understand MHD near and above no-wall limit
 - Operation at no-wall limit assumed as baseline for all next-step ST designs
 - Operation near ideal-wall limit is NHTX goal, enhances NCT, required for ST-DEMO

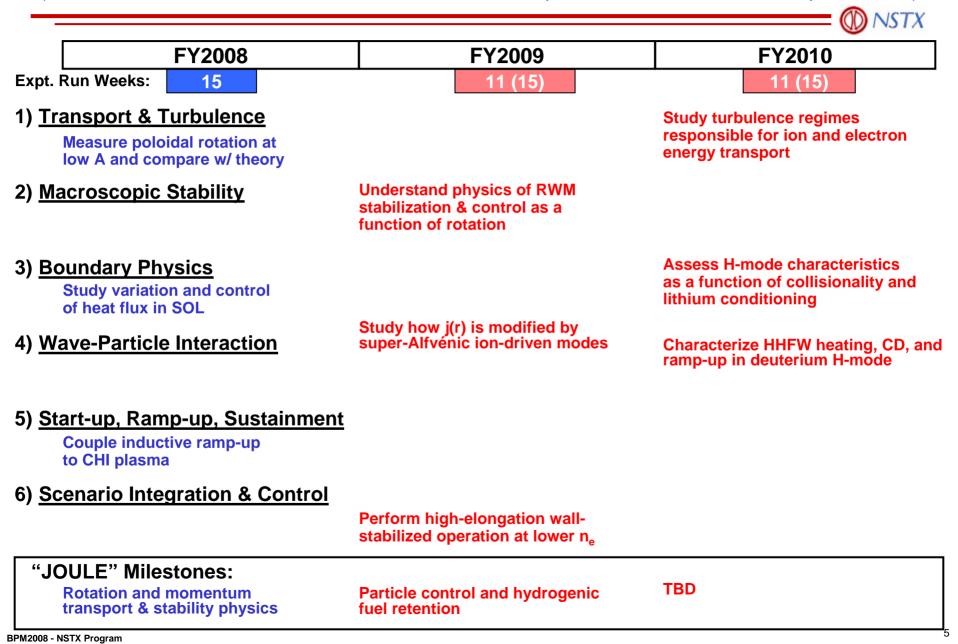
Priorities cut across FESAC-05 topical science questions and campaigns

Reduced normalized density/collisionality represents the largest gap between present and next-step ST operating scenarios

Reduced density / collisionality impacts all topical science areas:

- Transport & Turbulence
 - Underlying instabilities (micro-tearing, TEM, and ETG) scale differently versus ν^{\star}
 - If $T_e(r)$ is determined by critical ∇T_e , H-mode confinement may be reduced at reduced n_e
- Macroscopic Stability
 - RWM critical rotation and viscous torques may increase at lower v_i
- Boundary Physics
 - ELM ΔW increases with reduced v_e^* could impact confinement, plasma purity, divertor
 - Detachment schemes for heat flux reduction more challenging with reduced SOL ν
- Wave-Particle Interaction
 - AE avalanches more easily triggered at reduced n_e possible fast-ion redistribution/loss
- Start-up, Ramp-up, Sustainment
 - NBI-CD and RF-CD efficiency for ramp-up are increased at reduced n_e, increased T_e
- Scenario Integration and Control
 - Steady-state scenarios rely on reduced n_e to increase NBI-CD to achieve 100% NI-CD
- We are counting on LLD to pump D to access reduced collisionality
 - Need to understand LLD operation, Li transport in SOL and to core, etc.
- Separate dependence on collisionality vs. Lithium

OD NSTX


Near-term impact of priorities & emphasis on ν^{\ast} and Li

- We need to deliver on progress on the priorities
- Alignment of research with 4 priorities (in addition to milestones) will be assessed at mid-run assessment
 - Will consider new experiments, and/or de-emphasis of existing proposed experiments
- Consider new research "thrust" or TSG that leads research on cross-cutting impact of reduced collisionality and impact of Li (both LITER and LLD)
 - Needed for FY09 Joule milestone on pumping characterization and H retention

NSTX

Baseline FY2008-10 research and "Joule" milestones

(15 run weeks in FY2009/10 would enable more in-depth research of milestone topical areas)

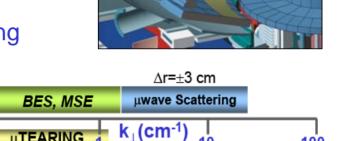
Full utilization in FY2009-10 would enable critical research on fast-ion redistribution, start-up and ramp-up, HHFW, and high β

= OD NSTX

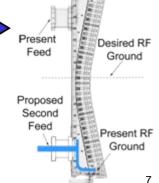
FY2008	FY2009	FY2010
Expt. Run Weeks: 15	25	25
1) <u>Transport & Turbulence</u> Measure poloidal rotation at low A and compare w/ theory		Study turbulence regimes responsible for ion and electron energy transport
2) <u>Macroscopic Stability</u>	Understand physics of RWM stabilization & control as a function of rotation	Assess sustained operation above the no-wall limit at reduced collisionality
3) <u>Boundary Physics</u> Study variation and control of heat flux in SOL		Assess H-mode characteristics as a function of collisionality and lithium conditioning
4) Wave-Particle Interaction	Study how j(r) is modified by super-Alfvénic ion-driven modes	Characterize HHFW heating, CD, and
	Accelerate high-power HHFW 1yr	ramp-up in deuterium H-mode
5) Start-up, Ramp-up, Sustainment	Integrate MHD mode modification of j(r) into optimized operation	Test predictive capability of mode- induced fast-ion redistribution/loss
Couple inductive ramp-up to CHI plasma	Investigate methods for solenoid-free current initiation using induction from the outer poloidal field coils	Test non-inductive current generation using plasma guns
6) <u>Scenario Integration & Control</u>	Perform high-elongation wall- stabilized operation at lower n _e	
"JOULE" Milestones: Rotation and momentum transport & stability physics	Particle control and hydrogenic fuel retention	TBD

BPM2008 - NSTX Program

Near-term upgrades support highest priorities for FY08-10 and enable key research thrusts:


- 1. Implement liquid lithium divertor for pumping, and investigate other potential benefits:
 - Improved confinement
 - Reduction/elimination of ELMs
 - Compatibility of LLD with high flux expansion
 - Longer-term: steady-state high-heat-flux handling
- 2. Implement BES to complement existing high-k scattering diagnostic
 - Measure full wavenumber spectrum of turbulence
 - Determine modes responsible for anomalous transport of energy & momentum

Tools


(Present, Future)

Modes 0.1 µTEARING

- 3. Upgrade HHFW system for higher P_{RF} + ELM resilience
 - Determine if HHFW can ramp-up I_P in H-mode (BS+RF overdrive)
 - Determine if HHFW can heat high- β_N advanced H-mode scenarios
 - HHFW/ICRF also important for NHTX/CTF/ITER

100

ETG

5 year plan completion schedule

- NSTX 5 year plan **review** will be week of June 23, 2008
 - Provide clear/clean separation of FY09-10 and FY11-13 plans
 - Provide strong scientific justification for FY11-13 upgrades/operation
 - Focus on *new understanding* gained from additional capabilities/run-time

⇒ 「	• March, 2008	Revise chapters to separate
e		FY09-10 and FY11-13 plans
e e re	• April 4, 2008	Completed draft chapters
•	• April 21, 2008	Complete draft plan edits complete
•	• May 5, 2008	5 year plan text complete
•	• Week of June 2	Dry runs of presentations
	June 9-13	EPS
•	• Week of June 16	Final presentation material ready
	Week of June 23	2009-13 Five year plan review meeting

We are her