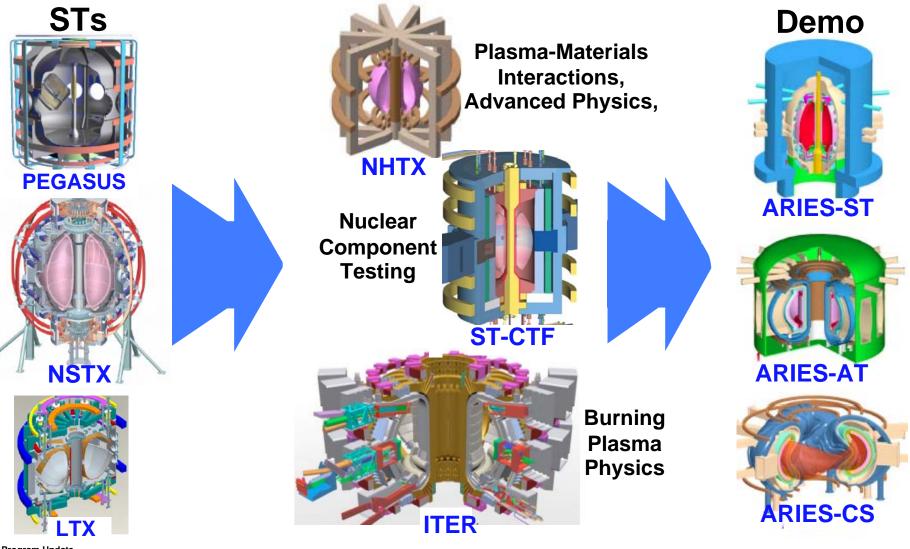


NSTX Program Update: NSTX upgrade discussion 5 year plan schedule

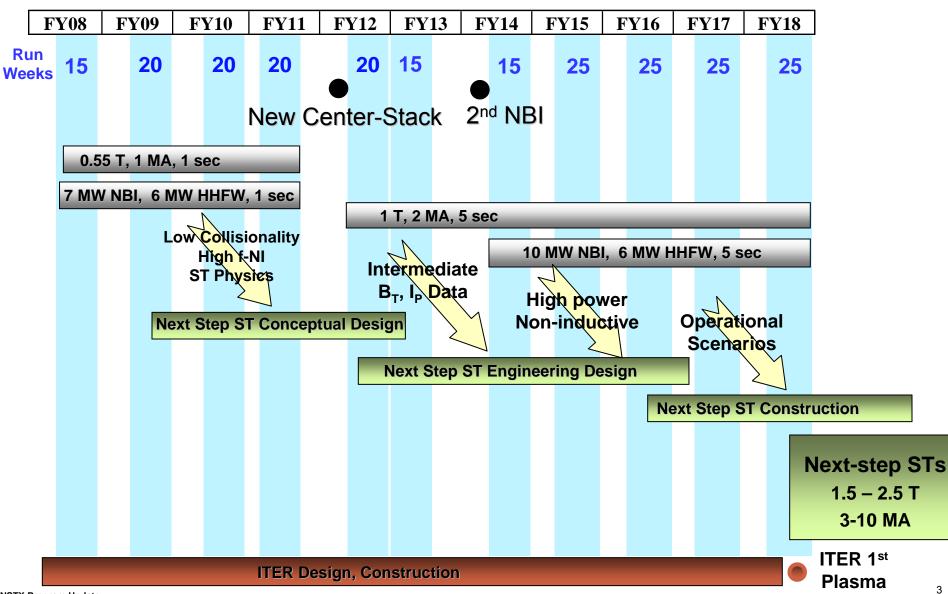
College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank, Inc. UC Davis **UC** Irvine **UCLA** UCSD **U** Colorado U Maryland **U** Rochester **U** Washington **U Wisconsin**

NSTX Program Update

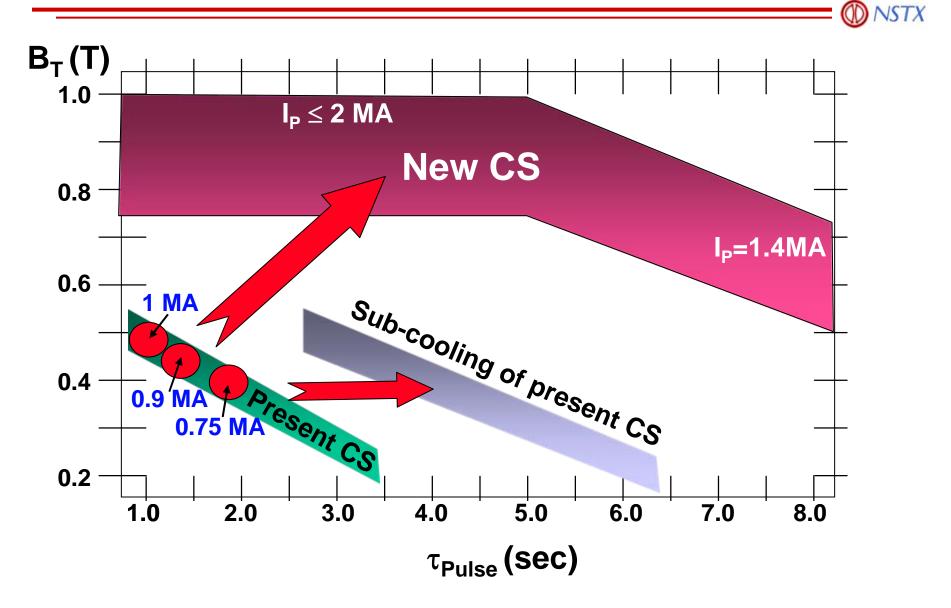
J. Menard, M. Ono


May 28, 2008 NSTX Team Meeting Princeton Plasma Physics Laboratory

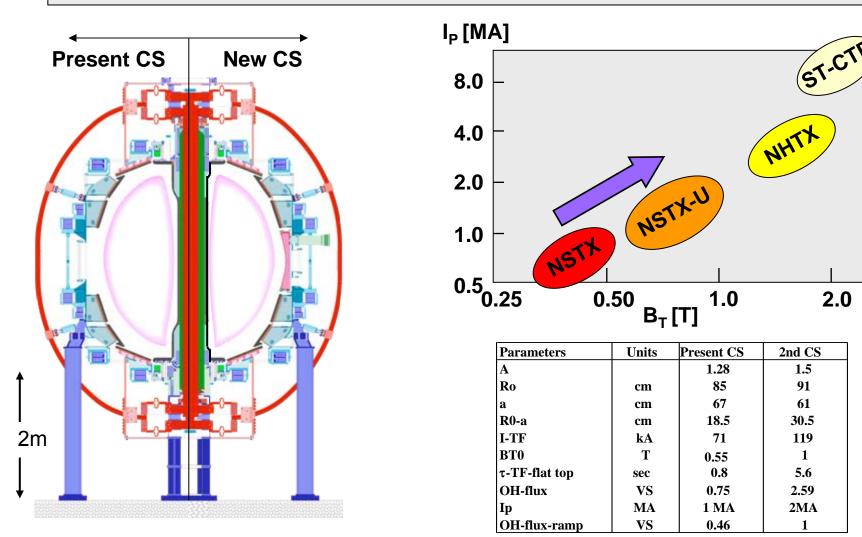
Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec


NSTX Research Program Contributes Strongly to US and World Fusion Development

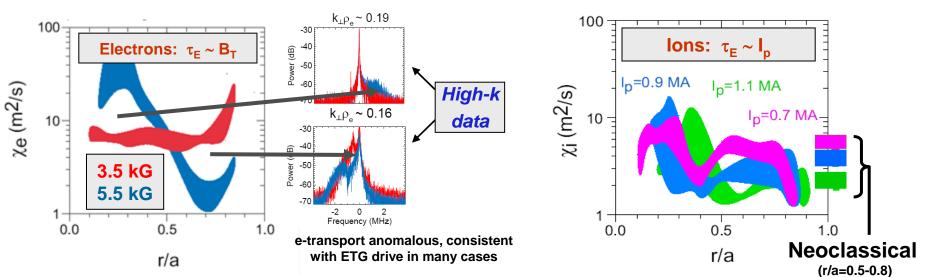
ST offers compact geometry + high β for attractive fusion applications


Proposed NSTX 10 year plan supports ST community goal of constructing and operating a next-step ST during the ITER era

NSTX Program Update


DNSTX

New CS would greatly expand performance range of NSTX

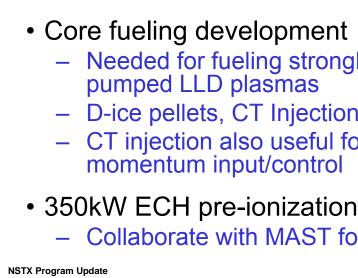

New NSTX center stack would enable significant step toward parameter regime of next-step STs

• NSTX-U would operate within a factor of 2 in B_T and 2-4 in I_P of next-step STs • NSTX-U would have higher aspect ratio = 1.5-1.6 similar to next-step STs

NSTX

New center stack would greatly expand understanding and performance of ST plasmas

Access higher temperature, lower collisionality plasma


– Reduced v^* impacts transport, MHD, boundary physics, fast-ion-driven instabilities

• Improve understanding of transport and turbulence:

- Assess if electron $\tau_E \sim B_T$ is result of low B_T , high β , suppressed ion transport, other
- Assess if near-neoclassical ion transport is maintained at lower v*, higher B

•Assess heating, CD, start-up, ramp-up closer to parameters of next-step STs:

- Higher field, current \rightarrow improved fast-ion confinement, higher T_e \rightarrow higher NBICD
- NBI $v_{fast} / v_{Alfvén}$ lower \rightarrow fast-ion instabilities reduced and variable over wider range
- HHFW surface waves reduced \rightarrow improved power coupling
- Higher B_T, T_e aids plasma start-up (CHI, guns, PF)

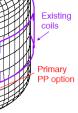
 350kW ECH pre-ionization for improved CHI, plasma gun, and PF start-up Collaborate with MAST for EBW start-up and current drive?

Needed for fueling strongly-

LLD for sustained pumping and high heat flux

If LLD unsuccessful, implement cryo-pumps

- **NSTX** is only **ST** that can study ELM control at $\beta_N > \beta_{N-no-wall}$


- EF correction w/ $n \le 6$, Ω_{ϕ} control ($n \le 6$; n > 1 propagation)

– ELM mitigation w/ n up to 6, RWM control w/ n > 1 & higher β_N

- D-ice pellets, CT Injection
- CT injection also useful for

Interna coil

option

7

Secondary

P option

DNSTX

FY14-18: 2nd NBI in combination with new CS would greatly expand understanding and performance of ST plasmas

- Assess full non-inductive regimes of next-step STs
 - Test prediction of higher CD efficiency from larger R_{TAN}
 - Test off-axis NBI-CD for maintaining $q_{min} > 1$
 - Test ability to avoid NTMs with $q_{MIN} > 2$ operation
 - Higher field increases q at fixed ${\rm I_P}$
 - Optimize mix of BS and NBI-CD for full-NI operation
 - Higher B_T lowers β_N at fixed I_P and $f_{BS} \rightarrow$ expanded operating range
 - Compare full-NI operation near no-wall and ideal-wall β_{N} limits

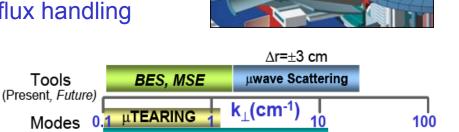
– 5s TF \rightarrow can sustain full non-inductive operation for $\tau_{flat} >> \tau_{CR}$

- Test NBI current ramp-up at higher B_T , I_P , and P_{NBI}
- Assess high-power scaling of confinement at high ${\rm B_{T}},\,{\rm I_{P}}$
- Develop long-pulse divertor at high heat flux up to $20 MW/m^2$
- Greatly expand research flexibility by varying:
 - q-shear for transport, MHD, fast-ion physics
 - Heating, torque, and rotation profiles
 - β , including higher β at higher I_P and B_T
 - Fast-ion f(v_{\parallel},v_{\perp}) and *AE instabilities
 - 2nd NBI more tangential like next-step STs

JSTX

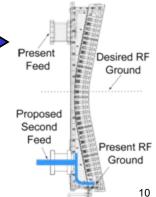
New 2nd NBI

R_{TAN}=110,120,130cm


- 1. Increase and understand beam-driven current at lower $n_e,\,\nu^{\star}$
- 2. Increase and understand H-mode confinement at low ν^{\star}
- 3. Demonstrate & understand non-inductive start-up & ramp-up
- 4. Sustain β_N and understand MHD near and above no-wall limit

Near-term upgrades will continue to support highest research priorities identified previously for FY08-10

- 1. Implement liquid lithium divertor for pumping, and investigate other potential benefits:
 - Improved confinement
 - Reduction/elimination of ELMs
 - Compatibility of LLD with high flux expansion
 - Longer-term: steady-state high-heat-flux handling
- 2. Implement BES to complement existing high-k scattering diagnostic
 - Measure full wavenumber spectrum of turbulence
 - Determine modes responsible for anomalous transport of energy & momentum


Tools

- 3. Upgrade HHFW system for higher P_{RF} + ELM resilience
 - Determine if HHFW can ramp-up I_P in H-mode (BS+RF overdrive)
 - Determine if HHFW can heat high- β_N advanced H-mode scenarios
 - HHFW/ICRF also important for NHTX/CTF/ITER

Liquid Lithium

Divertor (LLD)

ETG

Firm run-time guidance is not yet available, but we expect increased run-time and additional (incremental) milestones

OD NSTX **FY2008 FY2010 FY2009** Expt. Run Weeks: 15 20 (?) 20 (?) 1) Transport & Turbulence Study turbulence regimes responsible for ion and electron Measure poloidal rotation at energy transport low A and compare w/ theory Assess sustained operation 2) Macroscopic Stability Understand physics of RWM above the no-wall limit at stabilization & control as a reduced collisionality function of rotation 3) Boundary Physics Assess H-mode characteristics as a function of collisionality and **Study variation and control** lithium conditioning of heat flux in SOL Study how *j*(*r*) is modified by 4) Wave-Particle Interaction super-Alfvénic ion-driven modes Characterize HHFW heating, CD, and ramp-up in deuterium H-mode Accelerate high-power HHFW 1yr Integrate MHD mode modification of Test predictive capability of modej(r) into optimized operation induced fast-ion redistribution/loss 5) Start-up, Ramp-up, Sustainment **Couple inductive ramp-up** Investigate methods for solenoid-free Test non-inductive current to CHI plasma current initiation using induction generation using plasma guns from the outer poloidal field coils 6) Scenario Integration & Control Perform high-elongation wallstabilized operation at lower n_a "JOULE" Milestones: TBD **Rotation and momentum** Particle control and hydrogenic

fuel retention

NSTX Program Update

transport & stability physics

5 year plan document completion schedule

🔘 NSTX

- NSTX 5 year plan review will be week of July 28, 2008
 - 2 major themes: (1) physics from new CS, (2) impact of reduced v^*
 - Up to 10× lower v*, similar ρ^*_{th} , smaller ρ^*_{fast} , lower v_{fast}/v_{Alfvén}, 5s pulses, etc...
 - You should also consider diagnostic impact
 - For example, need to move MPTS sightline & dump, and measure up to $T_e(0)$ = 10keV

Keep discussion of merits of 2nd NBI, but be clear this is at end of 5yr plan
Provide strong <u>scientific</u> justification for all major upgrades

Start NOW! **Incorporate new CS, low** v^* into chapters **June 9-13** EPS here Complete draft plan edits complete June 16, 2008 • June 23, 2008 5 year plan text complete Week of July 7 Dry runs of presentations Week of July 14 **Final presentation material ready** Week of July 28 2009-13 Five year plan review

Reduced ν^{*} and normalized n_e represent the largest gap between present and next-step ST operating scenarios

Next-step ST's: v^* will be 10-100× lower, n_e/n_{GW} 2-4× lower

Reduced density and collisionality impact all topical science areas:

- Transport & Turbulence
 - Underlying instabilities (micro-tearing, TEM, and ETG) scale differently versus v^*
 - If $T_e(r)$ is determined by critical ∇T_e , H-mode confinement may be reduced at reduced n_e
- Macroscopic Stability
 - RWM critical rotation and viscous torques may increase at lower v_i
- Boundary Physics
 - ELM ΔW increases with reduced v_{e}^{*} could impact confinement, plasma purity, divertor
 - Detachment schemes for heat flux reduction more challenging with reduced SOL ν
- Wave-Particle Interaction
 - AE avalanches more easily triggered at reduced n_e possible fast-ion redistribution/loss
- Start-up, Ramp-up, Sustainment
 - NBI-CD and RF-CD efficiency for ramp-up are increased at reduced $n_{\rm e}$, increased $T_{\rm e}$
- Scenario Integration and Control
 - Steady-state scenarios rely on reduced n_e/n_{GW} to increase NBI-CD to achieve 100% NI-CD
- Expect higher B_T and I_P will increase T_e and T_i
- Expect LITER + LLD and/or cryos will pump D to control and reduce density
 - Need to understand LLD operation, Li transport in SOL and to core, etc.
 - Separate dependence on collisionality vs. Lithium

(OD) NSTX