Research Operations Division Boundary Physics (H. Kugel)

- Continuing to rely heavily on the LITER system
 - About 250g of lithium already deposited in vessel
 - Liquid-lithium filling system (LIFTER) used routinely on all 4 LITERs
 - Repairing Bay K shutter damaged by control malfunction on Monday
 - Requires two brief argon vents of vacuum vessel
 - Successfully recovered after repair of Bay-K TIV and shutter in April
 - LITER-K2 was also damaged in collision
 - Need four LITERs operational for planned round-the-clock filling of LLD

Research Operations Division Boundary Physics [2]

- Preparations for second round of LLD experiments are in progress
 - > XP-1059: "LLD Characterization, Part II"
 - 3 LLD plates heated to 220°C to obtain RGA spectra of outgassing after first pair of argon vents
 - Prototype gas heating system heated 4th LLD plate to 173°C average temperature (Li M.P. 180°C)
- First light seen with divertor imaging spectrometer (DIMS)
 - ▶ IR cameras, including 2-color system, taking data
- Dennis Mansfield participated in experiments on EAST using a lithium powder dropper provided by NSTX
- Performing RGA measurements in test chamber with lithium coating on various PFC surfaces
 - Porous Mo (LLD) sample completed, now setting up for graphite

Research Operations Division Diagnostics (*R. Kaita, B. Stratton*)

- Beam emission spectroscopy diagnostic (U. Wisc) produced initial data on R = 1.4 m view
 - Performed XMP-70 to characterize signals and point-spread vs q(R)
 - Working to make shutter reliable for R = 1.3 m view
- Divertor fast visible cameras for full imaging of LLD operating routinely
- Reliable remote control of mirrors & attenuators for high-k scattering
- Implemented 3 MHz bandwidth electronics for FIReTIP for more reliable density data and improved fluctuation measurement capability
 - achieved ~9 dB reduction in phase noise
- NSTX research presented in invited talk and twenty-one contributed posters in 18th Topical Conference on High-Temperature Plasma Diagnostics Conference at Wildwood, NJ on May 16-21, 2010

(D) NSTX -----

Research Operations Division Diagnostics [2]

- MSE-LIF
 - Procurements and fabrication of components making good progress
 - Installation during next shutdown
- MPTS additional channels
 - All procurements underway: many components now delivered
 - Assembling new polychromators and fabricating electronics
 - Installation during next shutdown
- Other diagnostic installations planned for next shutdown
 - Tangential FIDA (UC-Irvine) defined new tangentially viewing ports
 - Edge soft x-ray array (JHU)
 - Real-time velocity measurement rtCHERS (PPPL)

(D) NSTX ——

Research Operations Division RF systems (J. Hosea)

- After plasma conditioning, launched 2.2 MW into He plasma for 200 ms
- Also reached 2.2 MW in D NBI H-mode plasma for 160 ms (after 1 arc)
- Good heating in low 300 kA discharges for startup experiments
 - $T_e(0) \sim 3 \text{ keV}$ with 1.4 MW at $n_e \sim 1 \times 10^{19} \text{m}^{-3}$
 - Achieved H-mode with RF only as desired for current ramp-up
- RF antenna operation has deteriorated since return to operation in June
 - Prior to first argon vent, readily vacuum conditioned to ~25 kV
 - ▶ After the vent, achieved ~20 kV only with some difficulty
 - ► After plasmas, could only reach ~15 kV after considerable effort
 - Cause of deterioration unknown
- Plan to perform extensive conditioning to regain ~25 kV vacuum standoff

Research Operations Division Physics Operations (D. Mueller)

- 3 new Physics Operators now assisting in experiments
- Recovered operation remarkably quickly after argon vent in April
- Several enhancements to PCS tested and commissioned
 - "Relay" control (XMP-69)
 - Combined X-point height and outer strike point control (XP-1003)
 - Combined PF4/PF5 operation (XMP-68) for outer squareness control
 - Discussions underway on implementing rotation control in 2011
- Continue to suffer adverse consequences from transient events in some discharges
 - Gas system component, diagnostic electronic failures, remote control malfunctions
 - Need vigilance in maintaining integrity of ground system within and between ground categories

Research Operations Division Safety Considerations

- Division covers many activities with potential hazards
 - Much diagnostic equipment is located in potentially hazardous areas
 - We rely on dedicated safety systems and well established procedures to mitigate the "external" hazards
 - high voltage, radiation, high temperatures and pressures, RF power
- What about the safety of equipment that you develop and maintain?
 - You may be the person most knowlegeable about unique equipment *but*
 - That can lead to complacency and situation blindness
 - If you're fixing it, it may be because it's malfunctioning in a way that makes it hazardous
 - Do you know that the circuit you are working on or the gas line you're about to disconnect is in a safe condition?
- If you make a temporary modification to trouble shoot a piece of equipment, consider the ramifications

MGB / Team Mtg. / 100625

()) NSTX ——

Research Operations Division Safety Considerations [2]

- We host many visitors, some experienced, some less so
 - Hazards may seem obvious to you, but they may not be to people from other places and working environments and with less experience
 - If you are hosting a visitor, establish whom they should go to with any questions if you're not around
- Don't be reticent to ask for a second opinion about any potentially hazardous setup or to refer such questions to an experienced person
 - It's not a sign that you don't have "the right stuff"
- All the safety training you and our visitors take will be for nought if you don't apply it in practice to the situations you encounter
 - Ask yourself:
 - What could go wrong?
 - What could this action affect?
 - Is this bypassing a safety related system?

MGB / Team Mtg. / 100625