

Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

New York U

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Wisconsin

U Washington

U Illinois

UCLA

UCSD

CompX

FIU

INL

LANL

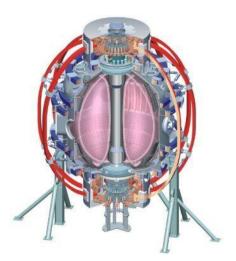
LLNL

MIT

ORNL PPPL

SNL

Lodestar


Update on NSTX Program

J. Menard

for the NSTX Research Team

LSB B318 PPPL June 21, 2011

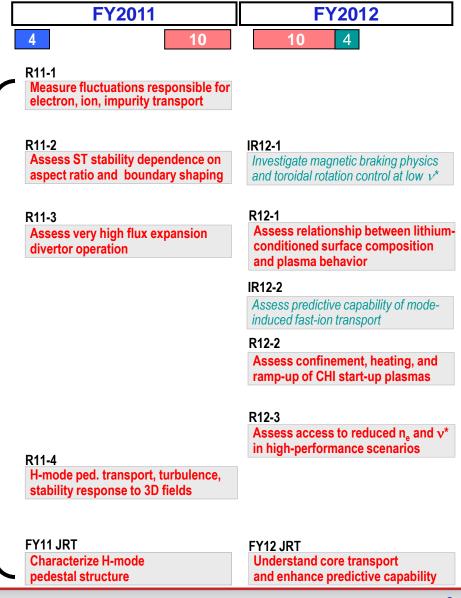
NSTX Team Meeting

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst RRC Kurchatov Inst TRINITI **NFRI KAIST POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP, Jülich

IPP. Garching

ASCR, Czech Rep

Outline


Reminder on XP review

Mid-term review

- Diagnostic collaboration solicitation
 - Considerations
 - Draft 5 year plan → diagnostic idea form
- International ST Workshop

TSG leaders: please continue to get high priority experimental proposals (XPs) reviewed, approved

Highest priority is to get FY2011 milestone XPs ready to run

NSTX 5 year Plan Mid-term Review

- Held at OFES June 6-7, 2011
 - NSTX, C-Mod, DIII-D
- 3 charge questions:
 - Progress and merit of research and facility improvements
 - Adaptation to technical or programmatic changes
 - Areas of future improvements and their priorities
- 9 member review panel
 - International/universities (i.e. unaffiliated with 3 major programs)
- Presentations to review panel (times include discussion):
 - J. Menard Research Program Progress and Plans 2hrs
 - M. Ono Facility Status and Plans (+ NSTX Upgrade) 1hr
- Providing final responses to panel questions this week...
- URL: http://nstx.pppl.gov/fiveyearplan_mid.html

Considerations for upcoming FES Collaboration Solicitation for NSTX-U Diagnostics

- NSTX program letter will be issued ~ Aug. 1, 2011
- Diagnostics should target usage for, and needs of, NSTX Upgrade.
- FES/Eckstrand has indicated next diagnostic collaboration solicitation will be for 4 years instead of the usual 3 so that collaborators will have 1 year of (new) data during grant period on which to base progress and future proposals → next diagnostic collaboration: FY2012, 13, 14, 15
- FES also anticipates other next collaboration cycles (University and Industry, National Labs) would be extended 1 year to synchronize
- Will gather ideas through ~July 1, then have brainstorming meeting(s) during early July 2011 to get ideas on the table – discuss as a team
 - Goal is to have TSGs prioritize diagnostic ideas for each topical science area
- New/upgraded diagnostics should take into account:
 - Research goals of NSTX Upgrade program especially the early/initial years (FY15-16)
 - 2x higher TF, 2x higher plasma current and poloidal field, 2x higher heating power
 - Up to 5x longer pulse = 5-10s versus present 1-2s
 - 2nd NBI will displace several diagnostics how will capabilities be replaced?

Some example ideas for diagnostics that could be provided by NSTX collaborators - by topical area:

Start-up and Ramp-up

- Improved diagnostics for formation phase, impurities, temperature, density of helicity injection start-up
- Fast ion diagnostics suitable for monitoring AE event driven by 2nd NBI during ramp-up plasma target

Sustainment:

- Real-time MSE diagnostics for real-time J(r) reconstruction → feedback control using 1st + 2nd NBI
- Any clever ideas for fixing lack of background sight-lines/signals for CHERs?

Boundary:

- Heat flux, impurities, plasma temperature and density (divertor MPTS?) during snow-flake operation.
- May need real-time measurements to control real-time heat-flux and/or divertor temperature
- Improved Li diagnostics
- Additional GPI views in divertor to correlate midplane and divertor turbulence.

MHD

- Improved magnetic sensors, or SXR-based mode-ID? Imaging?
- Turbulence and transport:
 - Improved BES? Improved high-k scattering measuring both k-r and k-theta?
 - Ideas on how to measure micro-tearing?

Energetic particles:

- Array of SSNPAs, neutron camera, or other
- Energy dependence of distribution function w/o NPA?

HHFW:

Improved surface wave detection? Array of toroidally distributed high-f (i.e. RF) Mirnov coils?

Please use draft plan for 2011-2018 as guide, send diagnostic ideas to Brent Stratton by July 1

				Begin P12034-SSS year plan				
	Operation 2011	Operation 2012	Upgrade Outage 2013	Upgrade Outage 2014	Operation 2015	Operation 2016	Operation 2017	Operation 2018
Start-up and	Increase Officialed flux current to 200-250A	Couple ON start-up to low to DK, head with KNPW, machinize non- inductive fraction	Prop Okt for Upgrade - equilibrium sales with one PF cells	Prepare plasma guns for Lipgrade - power supplies, gas systems, time-dependent	Utilize CH and/or plasma gure to form 0.3MA dosed-flux	Utilize Offiand/or plasma gurs to form 2.5ML classed flux plasma	Utilize OH and/or plasma-guns to form 0.5-1MA closed-flux	Optimize start-up for 320% non-
Ramp-up	Assess HMPW as local to head CHI plannia, increase/extend plannia	Validate time-dependent modeling of Oil start-up with	Perform updated TIC/NIMADO simulations for projecting Oil start up to Upgrade and PRIS/Worl	modeling Update time-dependent makeing of NSI semp-up using projections of anomalous fast-	plasma Kamp up 0.3-0.6MA plasma to 0.6MA with 2nd NR	Samp up 0.4 0.5MA planta to 0.6MA with 2nd NB, perform	Famp up 0.4-0.5MA plasma to 0.8-1.5MA	Seta & confinement Optimize ramp-up for 130% non- industrie scalariment and high Seta & confinement
Sustainment	correct Initial back of outlainment of low ty plasma with HMM and/or NSI CO and heating	NBMBCC, TSC using 2003 data Sustain form to plasma with HAPM and/or NBI	up to Upgrade and PKIN/Plot Model/Senshmark low-tp sustainment results	Model sustainment - update projections for Egyptate and MODE Total	Access 100% non-inductive for several law Eusing 3nd NBI	Asses 200% non-industrie for 3 lan-CL - perform assessment of contaments seeming for POSY/Non-	Extend 300% non-industive to relaxed q profile (3-6 tax-CE)	beta & confinement bringrate non-trobuctive start-up, ramprup, and sustainment, proped performance to
Scenario Development and Control	Implement and assess improved vertical control of higher A and lappe for Dygrade, MSF/Plot	Assess and optimize scenario performance of reduced density and collectionality	Update time-dependent modeling of 76% sument-drive sustainment using projections of anomalous fast-ton diffusion	Perform trittal design of real- time MSE and CHESS for the correction), design control algorithms for corrent profite	Demonstrate grain variation with NBI source using 2nd NBI	Little 1st + 2nd NB source role to optimize stability and transport	Developiumbation real-time control of current profile for ligh- non-inductive traction plasmas (*1500)	Extitive current profile condrol to matrical high confinement and statisticy—project to requirements for PASS Plant
	Utilize SUMs, SD fields, and other scenario variations to reduce impurities in Lityounged scenarios	Implement real-time edge relation measurement and initial control algorithms	Project reduced density operating results to pumping and divertor feet this religation requirements for Upgrade	control Implement dentity feedback control for current remp-up phase, extend to flat-top if feedback.	Salemid SIMA plasmass from Its to 2-6a, increase flat top current to 3.8MA for 2-2s	Extend 1MA plannas to fis, extend 1.5MA flat-top to 2-fis, increase flat-top current to 2MA plannas for 2x- perform acceptured of control performance for PCS (Plat)	Butwood 0.7-15MA pleasures to large and 15, external 1,5MA flari- top to 5s, external 25MA pleasures to 2-6s flari-top	Extend 2MA plannar to be ancitor highest power to enable high P/E and P/E PM studies for PREP/Plant
Transport and Turbulence	Measure lowsk and high-k fortunesse, prepare for P122 JET	Compare line Land light Loriolence to resoured difficulty levels, contribute NSTS data to PY13 JET	Fire conceptual design of new high is waitering to improve inspace coverage	Finalize preparation for Installation of new high-s scattering system	Implement new high-s system, measure loan's turbulence requires to reduced not at higher to and 80 in Upgrade	Measure high-it turbulence at reduced null at higher to and 81 to determine motion responsible for a throughost, office global confluenced literals to proper little and power requirements for PASS/Miss!	Compare low-k and light-k forfolderse to measured difficulty tends to determine dominant instabilities for e- transport and intersport	Utilize turbulence understanding and IT confinement breaks to finalize MST/Minister, power requirements
MHD Stability, Stability Control	Implement and assess Improved EAVI central at higher A and largue for Liggrade, MSS/Yout	Asses RAM kinetic stability, EAM control, and error-field physics at reduced density/collaboratity	Physics design of new SD invested saids for Earth/SMP/EN/LAI/NOV/TM.	Implement notation control implement notation control amplification (IPA) identification and control algorithms. Design notation and IPA control algorithms.	Utilize relation certified using IED flexis and 2 httl: system to optimize relation profile for global and edge stability	Utilize real-time EMA incocurrences + bela feedback control for main-time prediction and existence of statistic forces. Exploit in-wave SC field such if installed/australia.	Combine rotation + RFA/beta sortind to improve same to statistic and socializement - project is established beta solvievable in PRSF/Flod	Incorporate real-time of profile information into rotation and lasts control and optimization to Improve scannin stability and sortationered
Boundary Physics	Improve understanding of pedestid structure - PSSS JET	Assess continuitability of tijf, socialists divertor in preparation for tiggrade	Specify and implement snowfake specific control algorithms into shape controller in prey for Upgrade	Assent/Incorporate uncerfiable divertor into PRES/Ploid design concepts	Assess peoledial structure (expectally Te height) and LOS. head-flux width at lighter field and surrend up to 1,8MA.	Assess predected and SOI, at up to 2.05Ms, project SUR, preser, head- floar militaglisten requirements for 5937 (Not.). Design real-time combrel of diverting paylingurity puffing for heat floar militaglisten.	Utilize divertor radiation and new 35 field colls to modify/optimize pededal transport, disertor detachment and performance. Implement divertor rad-time gen/importity puff contest.	Real-time control of snowfalse + realistime + 50 fields to control and notigate divertor heat flux
	Assess heat flux intigation and power assemblability with snowfaire shortor, assess performance of Min tiles high C importises and radiation	Model and conceptual design of crysporary() for Opposite for range of configurations including concentrated flux expension and logis flux expension (proveflate)	Finalize conceptual design of styrepump(d) for Digmate. Reced- on performance of the lite. In FY3019-12, dealer on whether contentack Digmate FFCs will be C or Mo.	Implement disertor cryo- pumping system(s) in Oppracie.	Assets impact of modified peolesial and SOL at high type would also should be performance, initial usage and assetsment of cryo-pumping performance.	Assess impact of modified pedestal and SOL at highest by 2000 con snowfaite director performance, and assess tryo pumping performance with snowfaite director	Assess synergies of anountake divertor, reductive impurities, and 30 faith for particle and power exhaust at very high unnelligated healt flux -project for PESI/Miss.	
Lithium Research	Assess infocured divertor Mis Elec as improved substrate for evaporated E	Assess II D pumping vs. surface conditions using NOOP probe	Ances applicability of U contings for pumping Upgrade planmas, enforce evaporator options as meeted. Design sold high-2 PPCs for outboard wats	Design/literation methods for increase Li costing coverage of seal's (magainston in to meutral gas, II) paint sprayer, upwand pointing evaporation). Fabricale logic 2 PPCs for outleand well.	Assess impact of full wall coverage of solid 2 on particle pumping, plasma performance. Install high-ZPPCs on outloand seeks.	Assess impact of full commange high ZSPCs+U on particle pumping, plasma performance. Assess/lineign hot self (poing laste- out) capability.	Utilize hot first-well capability with II on high-E PPCs, assess impact on particle journing, plasma performance.	Incorporate Uneal results into other facilities (IAST solistoration), and triud exiges of POSP, Plot and other next step facilities.
	Teel miliplane II granule hipothe as II definery system and for ELM biggering (pacing	Sed Disser and/or more rapidly deposited II layers for enhanced II pumping and confinement, resulfications	Design of next generation liquid 100 am systems focusing on continuously refreshed Life of pumping, and/or fouring U for diversion feet—flux milligation. flegin design of removable obsertor module (MDM).	Pubrication of prototype near- generation logist 100cm observe system. Complete design removable observe module (KDM) for Upgrade, legin fabrication.	Test next gen UD prototype(s) on PMI test stand (at PPR, or other, as available), literate as needed on dange, Inglament SOM on Upgrade.	Testinesingen ILE on ADM in NETS Diggrade. Utilize high head-thus placema to characterize Billium performance and EDD james! handling capabilities. Earning design, Perform preliminary projection of read-gen-LIS to PRIDE/PROC.	Complete design, begin Schröden of complete bondel coverage need generation LLD for NEEX Upgrade.	Emplement and test full toroidal converge marigen LLD for pumping and/or power handling squalifilities - project performance to PEEN/World
Energetic Particles	Measure fact ten rechtification with targential FICA, *AZ eigenfunitions with ES. Design pre-tatigue *AZ antienna.	Use langertiid + perpendisslar PEA to characteria distribution fundion reciffications indused by *Ad makes. Implement prototype *Sd antenna.	Use data-obtained in FY22 to strengum in NOVA C+ FXEX, MSD 5, MSM simulations of fast lon binsport in early phase of audianche annicition, Seglo design of opgraded *Ad antenna.	Extend simulations of fact ton transport to later to anatomic evolution, develop reduced model of fact inn transport rates during explanable tourst, and impact on fact ton profiles. Proatice design of approached "Ad- actionss.	Measure "All activity observed to be driven by more targential 2nd NM - compare to existing more perp NM. Implement opgraded "All antenna.	Emulate "All activity observed to be driven by more tangential NSI, extend non-times models to Upgrade plannes with 2nd NSI, Extend simulations to may date. Extend simulations of avalanches to PSE yield suclaiment phase.	Utilize *NE predictive capability is optimize, individual *NE as thirty during own industries surrout rangings with 2nd ME. Compare simulations to experimental results.	Estend simulations of "AE and and actions to PRE, That current samples from the PRE, That current simplestations for PRE, That disage, in particular INB input time geometry, expected current cline.
RF - HHFW	Next from by planess, advises high non-triductive current fraction, improve coupling to NM feeded Remode planess	Read CHI start-up plasma stopled to Industries, section low- by plasma 120% cost industries, improve scopling to MSH-tested Himsole plasmas	Assess/insolel expected fact too less onto HSFM antenna for Upgrade planes configurations and Upgrade MS healting sowers. Develop physics lasts for SHO molitation.	Modify HMM anderna limiter as needed for Upgrade operations. Model as breather performance with reduced monder of extensions stops. Develop physics back for particle transport induced by 860 excitation.	Assession with performance at lighter respects field and higher planns dentity expectally competitely units high power. Not operations. Design 2840 antienna uning KHFW shape, or same tourism. In NEXC-U	Little NPW is send start-up plane formation—compare to short-pulse EDA. Also assess impact of nPW e-heating on NR sometime (rang-up. Smulter/mack-up performance using extend number of sixup. Replaneed ENC anterna compatible with HPFW replaneeds.	Modify actual HATH's ordering system to have reduced number of drags. Test IHO antierva for impact on density/perticle continut.	Utilize modified HRFW system heading and CD to optimize planne destroy, emproy, and NSI scalaryment.
RF-ECH			Assess upgraded EO4 system requirements for plasma start-up support (e.g. pre-sociation, heating of O4)(you plasma, EBW surrent drive, expenied impact on subsequent NB ramprup!	Sprinte design of ROK system plasma start-up support	Implement short-pulse, tigh- power EOH system for plasma start-up support (0.5-1MW, 10- 50ms)	Test short pulse, high-power RCH system for plasma start up support assess impact on since flux current achieved, pulse length extension, non-industive traction.	Upgrade 8CH system power and pulse-length for EBM leading studies (IAMA, 0.2-0.5s)	Penning successful ISBN heating neurils, further upgrade ECH system power and pulsar-length for ISBN heating studies (2- 65M), 2-5d, project ISBN CD performance to PRIO/CTF
ITER support	Assess peolested transport and statelity response to 80 feets for TSE SMP and physics beautiful to 100 feets on peolested stitutions for TSE. projections.	Compare divertor gas tripicition to molyfare gas tripicition for disruption miligation - assess density activated to the total committee of the tripic gas paid for 1785 if NETS results Secretale.	Utilize 80 cell design and NITE physics back to acted to progenitions to find error blandful and correction, SWA section, and SWA Fibit continuities.	Assem/apply EWM state-space controller to ITE advanced scenarios. Assem EM residing resourcement and control for ITE advanced scenarios.	Apply "All avalenche predictive sepatatity to CTE Summing plannae - baseline samenin, hybrid samenin, and advance semanin. Apply MSTW per formanae experience all lighter field and current to CTES, antenna design and performanae projections.	Apply measured pedestal and SOL trends vs. Seld/current to projections for IEEE pedestal and disorder per formance.	Apply Upgrade divertor radiation control experience to proposed \$250, partially dischard director and associated control requirements.	Apply 130% non-industries traggated semants and sented experience to properation for CES, alversald semants.
ST-based FNSF/Pilot Physics Basis and Design Concepts	Publish NP paper on pilot plants including ST pilot	IDBD to optimize IT PSSI/Plint stre(c) and configuration(c) based on propered mobiler(c). Additional unfatoration with Calliam on defining missions and device configurations.	IZEC to optimize and finalize TT PSSI/Field configurations, explore closeries, first-wall, and literated nutridenance and impact/literation of new change-out capability.	Use NEDI fears to update and enhance PRE/PRIOS physics of patterns (LPE) offers a starting patter fears on impact of testing different diversor configurations in PRE/PRES	Djudete johydox basis and design point to incorporate profitmines, nesults on start-up, sempray, sustainment, and snowfalse	Update physics been and design point to incorporate results on dark up, ramp-up, and sustainment at higher planna surrent, and that results from next generation 100s;m divertor	Update design point to incorporate results on authorisite pias no beta and sonthermost in fully non- industries sontains. Compare NETA of sontalisies rays solution to protinting MACT-O Super-E protintings.	Update design joint to incorporate results on fully integrated MTS Upgrade securities (Sath up + samp up + socializated + distribut), assess impact of D-wall expertments.

Diagnostic idea/title:

Proposer and affiliation:

- What new physics would be obtained with this diagnostic capability? or, what critical existing capability will this diagnostic maintain?
- Is this a new diagnostic, or an upgrade of an existing diagnostic? If an upgrade or an enhancement, please provide some details of the enhancement (spatial/time resolution, etc).
- How does this diagnostic support NSTX Upgrade research plans? (see XL spreadsheet)
- Does this capability address a critical issue for ST-FNSF physics, ITER, or both?
- Is the scope of this diagnostic well-suited to university/industry collaboration? If not, why not?
- Are there any diagnostics that are not applicable or productive for the Upgrade that could be removed to save resources and/or free up ports?
- Are there any other important considerations/issues not addressed in the above?

Your ideas will also inform longer-term planning: i.e. next collaboration solicitation, 5 yr plan for 2014-18

International Workshop on Spherical Torus (ISTW2011) 27-30 September 2011 in Toki, Japan

- Planned attendees: Ono, Menard, Tritz, Raman, Gates (via NIFS)
 - There will also be poster session we can cover several posters each
- July 1, 2011 Submission of abstract to:
 - istw2011@nifs.ac.jp, and abstract and IAEA participating forms to proper authorities of country (or EU)
- July 11, 2011 Request invitation letter for VISA application to enter Japan
- July 15, 2011 Decision on paper acceptance
- July 22, 2011 Application for IAEA travel grants
- August 29, 2011 Hotel registration
- September 27-30, 2011 Joint ST meeting
- September 30, 2011 PDF file of presentation or poster
- September 30, 2011 Submission of manuscript
- Meeting website: http://istw2011.nifs.ac.jp
- For additional info, contact. Y-K M. Peng, pengym@ornl.gov

