

Research Operations Division Boundary Physics (H. Kugel)

- Lithium Evaporators
 - Four new LITERs built and installed on probe drives
 - First two filled, outgassed
 - One installed on NSTX; other filled with Ar, sealed & placed in storage pending decision on path forward
- Materials Analysis Particle Probe (MAPP Purdue U)
 - Instrumentation delivered by 2 Purdue students
 - Fabrication of probe rotation mechanism underway
 - ▶ Installation deferred *pending decision on path forward*
- Held FDR for the Centrifugal Lithium Granule Injector (D. Mansfield)
- Commissioned "massive gas injectors" at lower divertor and mid-plane for disruption mitigation studies

Research Operations Division Diagnostics (R. Kaita, B. Stratton)

- MPTS Upgrade (PPPL)
 - ▶ 12 new channels installed, calibrated and ready for plasmas
- MSE-LIF (Nova Photonics)
 - ▶ DNB injected under remote control into gas for wavelength calibration
 - Laser will be installed next
- Tangential FIDA (UC-Irvine) ready to commission with XMP
- Installation plans for several diagnostics now on hold pending decision on path forward
 - ▶ IR camera view of RF antennas (Bay B)
 - Prototype fusion product detector array (W. Boeglin, FIU)
 - Fast interferometer/polarimeter (UCLA)
 - Image intensifier for sFLIP to provide higher time resolution
 - Divertor-viewing SPRED spectrometer (LLNL)

Research Operations Division RF systems (J. Hosea)

- Performed successful vacuum conditioning of HHFW antenna on 8/4
 - Sources 1 & 2 rapidly conditioned to V_{cube} ≥ 25 kV for 100 ms
 - Reduced initially erratic coupling between Sources 3 & 4 to below
 -30 db after replacing control power supply and retuning decoupler
 - Conditioned Sources 3 & 4 and then 5 & 6 to V_{cube} ≥ 25 kV for 100 ms
- System is ready for operation with plasma
 - Established good baseline for a clean antenna
 - ▶ Even if TF is not repaired, it would be advantageous to characterize the voltage standoff with lithium coating the antenna before NSTX is brought up to air

Research Operations Division Physics Operations (S. Gerhardt)

- All "basic" modifications for second SPA complete and tested on 8/8
 - Power supply control code (psrtc) modified and successfully tested
 - Demonstrated control of 6 SPAs by PCS using current control
 - Still have some calibration discrepancies and SPA-generated noise remains a problem
- SPA feedback and control algorithms
 - Mode proportional feedback and error field control being tested
 - Started modifications for RWM state-space controller
- PCS development work
 - Measurements and code for improved dZ_p/dt calculator implemented and undergoing testing
 - Implementing methods for reducing transients at phase transitions
 - Implemented new rtEFIT and developing snowflake tracking algorithm
 - Hardware in place for real-time rotation measurementt