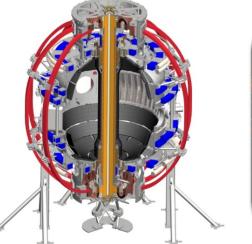


Supported by



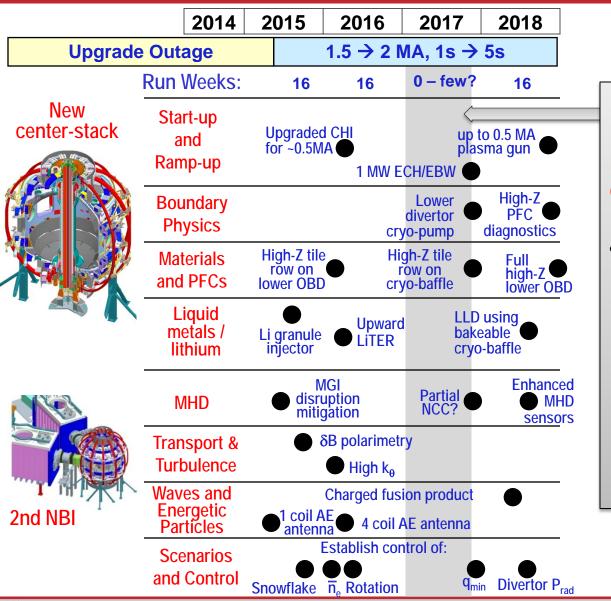
NSTX-U Team Meeting - Program Update

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

J. Menard NSTX-U Program Director

> **PPPL**, **B318** February 11, 2014

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev **loffe Inst** TRINITI Chonbuk Natl U **NFRI** KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati **CEA**, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep


Office of

Upcoming NSTX-U Program Events

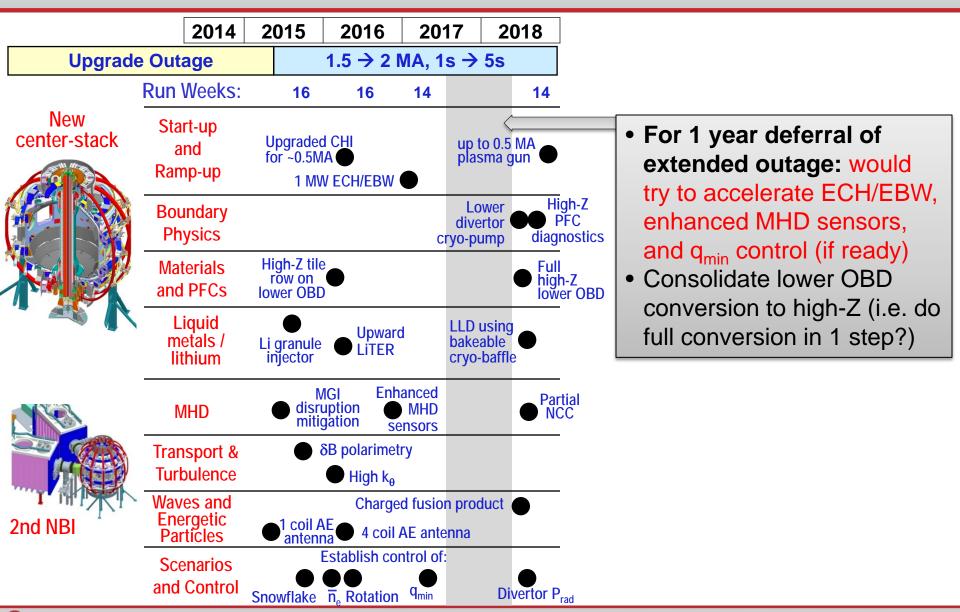
- FY2014-16 Field Work Proposal (FWP) preparation → budget planning meeting (BPM) on April 2, 2014
- Presentations by NSTX-U collaborators on research plans
 - April/May 2014 ~ 0.5-1.5 days
 - National labs, University and Industry (assuming outcome is known)
- NSTX-U PAC-35 meeting June 11-13, 2014
 - Get PAC input either on FY2015 run plan prep OR advice on how to respond to any significant delays + feedback on collaboration activities
- "Workshop" with team to identify ways to enhance university involvement in NSTX-U program – July-Sep 2014
 - Beneficial to NSTX-U program, addresses notable outcome: "Expand engagement with university scientists to enhance NSTX-U program"
- Research Forum for FY2015 run
 - Most likely September or December depends on CS installation/CD-4
 - Optimally 2-4 months before start of physics/research campaign

FWP motivates consideration of 5 year plan tools assuming base funding with extended outage deferred ½ year

NSTX-U Team Meeting - Program

D NSTX-U

Issue:


Extended outage shifted at least 6 months due to later CD-4 than assumed for 5YP

- Extended outage duration and scope need to be considered carefully:
 - May be important to run during FY2017 to operate for 4 of 5 years during 5YP
 - Unlikely all 3 major upgrades (ECH, cryo, NCC) can be implemented at same time and get run time during FY17

February 2014

3

Possible 5 year plan tools with 5YP base funding with extended outage deferred 1 year

🔘 NSTX-U

Draft FY2015-16 FWP milestones for base and incremental

	FY2014	FY2015	FY2016
Expt. Run Weeks:	0	16 20	16 20
Macroscopic Stability	Assess access to reduced density and v* in high-performance scenarios (with ASC, BP TSGs)		IR16-1
Transport and Turbulence		R15-1 Assess H-mode τ _E , pedestal, SOL characteristics at higher B _T , I _P , P _{NBI}	Assess τ_{E} and local transport and turbulence at low ν^{*} with full range of B_T, I_P, and NBI power
Boundary		(with BP, M&P, ASC, WEP TSGs)	R16-1
Physics		Develop snowflake configuration, study edge and divertor properties (with ASC, TT, MP)	Assess heat-flux mitigation and PFC response using advanced divertor configurations at high power density (Joint BP and MP)
Materials & PFCs		IR15-1	power density (Joint BF and MF)
	R14-2	R15-2	R16-2
Waves+Energetic Particles	Assess reduced models for *AE mode-induced fast-ion transport	Assess effects of NBI injection on fast-ion f(v) and NBI-CD profile (with SFSU, MS, ASC TSGs)	Assess fast-wave SOL losses and core thermal and fast ion interactions at increased ${\rm B_{T}}, {\rm I_{P}}$
Solenoid-free Start-up/ramp-up		Assess CHI & low-I _P FW heating at higher B _T , test NBI+BS I _P ramp-up (with WEP, ASC TSGs)	R16-3 Develop high-non-inductive fraction
	R14-3	IR15-2	NBI H-modes for sustainment and ramp-up (Joint ASC + SFSU)
Adv. Scenarios	Assess advanced control techniques for sustained high	R15-3	
and Control	performance (with MS, BP TŠGs)	Develop physics+operational tools for high-performance discharges (with CC, ASC, MS, BP, M&P TSGs)	
ITER Needs + Cross-cutting			
Joint Research Target	Quantify plasma response to non- axisymmetric (3D) magnetic fields in tokamaks	Quantify impact of broadened current and pressure profiles on tokamak confinement and stability	Assess MGI disruption mitigation, disruption warning and avoidance (+ additional theory contribution?)
NSTX-U	NSTX-U	I Team Meeting - Program	February 2014 5

Summary

- Draft milestone elements have been defined for FY16 FWP by topical science groups + program leadership
- Let us know of issues/changes to FY2016 milestone elements by this week Friday
- TSGs requested to please provide draft milestone text by COB next Wednesday

6

R(15-1): Assess H-mode energy confinement, pedestal, and SOL characteristics with higher B_T, I_P and P_{NBI}

- H-mode studies in NSTX showed range of important scalings:
 - Global energy confinement exhibits a favorable scaling $B\tau_{E} \sim 1/\nu_{e}^{*}$
 - This strong v_e^* scaling unifies disparate engineering scalings with boronization ($\tau_E \sim I_p^{0.4}B_T^{1.0}$) and lithiumization ($\tau_E \sim I_p^{0.8}B_T^{-0.15}$)
 - H-mode pedestal pressure increases with $\sim I_P^2$
 - Divertor heat flux footprint width decreases as ~ $1/I_P$
- Core and boundary confinement regimes will be extended to 2.5× higher $B_T \times I_P$ and 2× higher P_{NBI} + varied tangency radius
 - The relationship between H-mode confinement and pedestal structure with increasing I_{p_1} B_T and P_{NBI} will be determined
 - Focus on ν^* dependence of core $\tau_{\text{E}},\,\beta$ dependence of pedestal width
 - Utilize low-k turbulence diagnostics + gyrokinetic simulations to interpret
 - The scaling of the divertor heat flux profile with higher $I_{\rm p}$ and $P_{\rm NBI}$ will also be measured to characterize SOL widths, peak heat fluxes
 - Will provide basis for required heat flux mitigation at highest power, current

R(15-2): Assess effects of NBI parameters on the fast ion distribution function and neutral beam driven current profile

- Experiments will be carried out to systematically characterize the fast-ion population from the new 2nd NBI:
 - Utilize single-source scenarios at low NBI power to compare fast ion behavior with classical models (e.g. NUBEAM in TRANSP) in the absence of fast ion driven instabilities
 - Vary the injection tangency radius and beam voltage
 - Determine thresholds for onset of low-f fast-ion instabilities, and onset of avalanche behavior
 - Characterize evolution of fast-ion density using perpendicular and (new) tangential fast-ion D-alpha diagnostics, SSNPAs, neutrons
 - In higher-NBI-power experiments, document the inferred noninductive current profile and associated beam-driven current profile
 - Time permitting, also document fast-ion behavior with the 2nd NBI including scenarios with MHD instabilities (core kink and tearing), externally imposed 3D fields, and additional Fast Wave (FW) heating

R(15-3): Develop the Physics and Operational Tools for Obtaining High-Performance Discharges in NSTX-U

- Lay foundation for full operational scenario goals by developing needed physics and operational tools using:
 - Toroidal fields up to ~0.8 T, plasma currents up to ~1.6 MA
 - Improved applied 3D field capabilities from additional power supplies
 - Range of plasma facing component (PFC) conditioning methods, and advanced fuelling techniques (SGI, B/Li, ELM pacing, LGI, ...).
- Develop higher-A, high elongation (2.8 < κ < 3.0) plasma shapes anticipated to result in high non-inductive fraction
 - Optimize vertical stability control
 - Assess and implement low-n error-field correction, expand the RWM control and dynamic error field correction strategies (PID, state-space)
 - Use resonant field amplification measurements, ideal MHD stability codes, kinetic stability analysis to evaluate the no-wall/with-wall limits
- Assess non-inductive current drive fraction across range of toroidal field, plasma density, boundary shaping, NBI params

R(16-1) Assess heat-flux mitigation and PFC response using advanced divertor configurations at high power density

- Access highest I_P (2MA), and $\lambda_q \sim 1/I_P \rightarrow$ very high heat fluxes
- Assess amelioration of peak heat flux using (combinations of):
 - Magnetic balance DND vs. SN
 - Partial detachment
 - High flux expansion snowflake/X-divertor operation
- Implement PCS control of inter-X-point distance, X-point orientation, and flux expansion (if not completed in FY2015)
- Test hypothesis (UT-Austin) that convergence/divergence of SOL magnetic flux impacts full-detachment-front stability
- Measure impact of ELM-control techniques (3D fields, injected granules, etc) on transient heat fluxes vs. inter-ELM values
- Assess thermal/mechanical performance and high-Z impurity generation of TZM/W tile row (to be installed for FY16 run) vs. incident heat and particle flux and low-Z coatings

R(16-2) Assess fast-wave SOL losses and core thermal and fast ion interactions at increased field and current

- Important to NSTX-U start-up/ramp-up and ITER FW heating
- AORSA simulations suggest increased SOL power loss occurs when RF field amplitude in SOL is enhanced due to plasma in front of antenna being propagative vs. evanescent
 - Increased B_T and/or lower density should reduce E-field and losses \rightarrow utilize higher field and improved density control available in FY16
 - RF probes and upgraded Langmuir probes will be used to test for the presence of SOL RF fields, and ideally distinguish them from the effects of plasma heating.
- Once SOL losses are sufficiently well characterized, core wave absorption from ions will be assessed:
 - Evaluate the synergy between NB and FW in H-mode discharges that include plasmas with the new more tangential NB lines on NSTX-U
 - Look for significant FW heating of thermal ions predicted by full wave simulations at the higher toroidal fields attainable in NSTX-U

R(16-3) Develop high-non-inductive fraction NBI H-mode scenarios for sustainment and ramp-up

- Goal is to increase non-inductive current fraction toward 100% (or above if possible)
 - Focus on beam-heated H-modes with inductive ramp-up for target
 - High non-inductive duration goal: 1-2 current redistribution times
 - Vary q_{95} and beam source and power: $~f_{BS}\,{\sim}~q_{95}{}^{*}~\beta_{N}$
 - Higher TF capability \rightarrow 1T important for these studies
 - Vary q_{min} and κ to optimize stability and confinement to maximize f_{BS}
 - Upward LiTER, granule injector may aid density/impurity control
- Vary partial-inductive initial I_P value to assess achievable non-inductive fraction vs. initial current
 - Will inform non-inductive ramp-up scenario development
 - Informs achievable pulse-length vs. flat-top current for all experiments
- Provide data on confinement properties of high-non-inductive fraction plasmas for future/further optimization

IR(16-1): Assess τ_E and local transport and turbulence at low v^* with full confinement and diagnostic capabilities

 Builds on R(15-1) to assess confinement dependence field, current, and v* over widest range accessible

 $-B_T \rightarrow 1T$, $I_P \rightarrow 2MA$, P_{NBI} up to 15MW, improved density control

- Additional tools available in FY16 to facilitate this milestone
 - New high-k scattering should be available for ETG measurements k_r and k_θ for initial assessment of turbulence anisotropy
 - Polarimetry should be available in FY15 or 16 for initial μ -tearing data
 - Upward LiTER to maximize Li-wall pumping and confinement
- Provides initial dataset for distinguishing between microtearing vs. ETG/other via dependence on ν^{\ast}

NSTX-U JRT-2016 support: Assess MGI disruption mitigation, disruption detection and avoidance

- Study gas assimilation efficiencies for MGI injection from multiple poloidal locations and evaluate impacts on divertor heat loads and halo currents.
 - Understand gas penetration and assimilation physics by performing extended gas dynamics modeling, e. g. DEGAS-2 code
- In parallel, develop algorithms for real-time MGI triggering based on disruption warning system such as locked mode sensors, state-space observers and RFA.
- Assess operation and control techniques in producing stable high-performance plasmas, and document disruption rates
 - Produce stable plasmas at high normalized beta with pulse lengths exceeding those of past NSTX plasmas
 - Determine effectiveness of NSTX-U tools: enhanced EFC, RWM stabilization, q and rotation control techniques (open or closed loop)