

Program update

J. Menard for the NSTX-U Team

NSTX-U Team Meeting MBG auditorium September 15, 2016

Outline

Program status and plans

Collaboration opportunities

Engineering reviews

Very scientifically productive year

- Thank you for contributions to FY16 year-end report
 - Many capabilities brought online and provided new data
 - Substantial new physics results + continued analysis of NSTX data
 - ~200+ pages of research content
 - Shared with FES for their assessment of our performance
 - Highly useful for IAEA, APS, FWP
- Link on NSTX-U homepage:

http://nstx.pppl.gov/DragNDrop/Reports/Quarterly_Reports/2016/Q4/

NSTX-U	OPPI	ગ
NSTX-U FY2016 Year End Report J. Menard, M. Ono, and the NSTX-U Team September 14, 2016 – Version 13		
Table of contents		
• Executive Summary of NSTX	-U Year-End Report	2
 Notable Outcomes 		2
 Facility and Diagnostics 		3
 Research Milestones 		4
 Additional Research Highli 	ghts: Boundary, Core, and Scenarios	6
Performance of FY2016 Nota	ble Outcomes	14
 Facility and Diagnostics 		21
Research Results		44
FY2016 Research Milestones		
	nergy confinement, pedestal, and SOL BT, Ip and NBI heating power	45
 R(16-2): Assess the effects 		51
	n and neutral beam driven current profile	51
 R(16-3): Develop the phys 		55
obtaining high-performance		
Additional Research Highlights:		
I. Boundary Science		90
A. Pedestal Structure and G	Control	90
B. Divertor and Scrape-Of	f-Layer	98
C. Materials and Plasma F	acing Components	116
II. Core Science		133
A. Macroscopic Stability		133
B. Transport and Turbulen	ce	166
C. Energetic Particles		178
III. Integrated Scenarios		194
A. Solenoid-Free Start-up	and Ramp-up	195
B. Wave Heating and Curr	ent Drive	200
C. Advanced Scenarios and	d Control	210
	s, Invited talks, Seminars, Major awards, al Leadership (PPPL employees only)	217

1 of 235

Near and long-term NSTX-U schedule

- Results Review Wed-Thu, Sept 21-22 in B318
 - Draft agenda circulated by Stan
- Run Assessment Wed, Sept 28 also in B318
- Q1 FY2017: Data analysis and preparation for major fusion meetings including IAEA FEC, APS, and ITPA.
- Q3 PAC-38 date TBD
- Q4 Diagnostic and operations preparations and experimental planning (aka Research Forum)

> Opportune time for collaborations on other facilities: Dec 2016 to Aug/Sept of 2017

Outline

Program status and plans

Collaboration opportunities

Engineering reviews

Recently solicited PPPL NSTX-U researchers regarding collaboration interests

- Collaboration ideas should ideally complement / extend NSTX-U research results and plans
- Initial feedback total of ~3 FTE years of collaboration ideas proposed (in addition to existing collaborations)
 - DIII-D: Core transport and MHD/EP, pedestal physics, support FY2017 joint research target on dissipative divertors
 - -EAST: Edge physics, plasma material interactions (high-Z, Li)
 - -JET: Energetic particle studies and plasma ramp-down scenario development and modelling
 - -KSTAR: Core MHD and rotation physics, plasma control
 - MAST-U: Control, scenario modelling supporting 1st plasma
- Similar interests? want to join forces? let us know!

Off-site facility operations schedules (1) (Questions? Ask R. Hawryluk, R. Maingi, D. Gates, J. Menard)

- ASDEX-U: Start Feb 2017, run thru year except Aug/Sep (RH)
- DIII-D: Start Jan 23 and run thru July (RH)
 - 6 run weeks, perhaps additional week for "Frontier Science" and another for "National Campaign"
- EAST: not finalized normally operate April-June, Nov-Dec (RM)
- JET: Next campaign: Oct. 10- Nov. 11 (RH)
 - Pre-DT Shutdown: Nov. August 2017
 - Restart: September Dec 2017, physics experiments: Dec. 2017
- KSTAR: start ops in April 2017, end August 2017 (RH, JK Park, S. Sabbagh)

Off-site facility operations schedules (2) (Questions? Ask R. Hawryluk, R. Maingi, D. Gates, J. Menard)

- LHD: H-ops Feb 8, D expts starting Mar 7 (DG)
- MAST-U goal: 1st plasma in ~1 year, research by end of CY17 (JM)
- TCV: Nearly continuous operation (RH)
 - Except 4-5 weeks in January-February and 4-5 weeks
 between August and September
 - Probably avoid the EUROfusion campaign in June and July
- W7-X: Start July 2017 with 20 week run (DG)

- Taking proposals now, run planning workshop Feb/Mar 2017

ITER Science Fellows Program (1) (more info on the <u>web</u>...)

• ITER goal for program:

 - "Create a network of scientists and physicists working on simulation and theory within the research laboratories and institutes of the ITER Members, with strongly reinforced ties to ITER Project and team."

ITER Science Fellows Program (2) (more info on the <u>web</u>... or talk to Rich H / Jim Van Dam)

• ITER Scientist Fellows will:

- Be drawn from the leading researchers in the Members' fusion communities who have achieved international recognition for their contributions to fusion research.
- Be chosen by the Director-General, supported by the Executive Project Board, based on nominations from the heads of institutions.
- Remain in the employ of their home institutions
- Interact closely with the ITER Science & Operations
 Department in the definition of a research program and with other Fellows in its implementation.
- Spend average of 25-30% of time on ITER-related issues
 - 4 priority research areas: ELM control, disruption mitigation, edge plasma modelling, and integrated modelling (focus areas which may expand as the program evolves).

Outline

Program status and plans

Collaboration opportunities

Engineering reviews

FY17 FES "Notable Outcomes" emphasize getting NSTX-U to full performance, improving processes

• Thorough assessment of coils and in-vessel components

 "Complete an extent-of-condition review of NSTX-U, chaired by an independent subject matter expert, to identify possible design and construction deficiencies in the experimental device that might affect NSTX-U operation at full parameters...."

• Reviews of new coils, tubes + any extent of condition items

- "Complete a final engineering design review, chaired by an independent subject matter expert, certifying that all engineering analysis tasks identified in the preceding notable outcome have been successfully executed...."

• Improve engineering review and design change procedures

 "Conduct a review of policies and procedures for engineering changes made during construction, installation, and operational startup of NSTX-U and develop corrective actions to ensure that they effectively and efficiently identify, consider, and avoid or mitigate technical and operational risks."

Additional comments from JEM

- Research and engineering need to continue to work as a team to make the best long-term decisions about facility modifications
 - When replacing/upgrading components, should revisit design requirements as needed, based on FY16 ops experience
- Need to be open to suggestions about how to improve engineering processes, procedures, organization
 - We will get help from external committees, but our own personnel know and experience the issues first-hand
 - Insufficient analysis of electromagnetic effects on nominally "mechanical" objects is a persistent issue – need to remedy
 - "Critical systems" need to be identified, trigger higher/highest level of design review scrutiny – magnet systems are a prime candidate

Summary

• Thanks for all your contributions during FY16!

 In FY17, we will work together to move NSTX-U toward full capability safely, diligently, and ASAP

- FES, PSO, PU, PPPL remain highly supportive of NSTX-U, we thank them for their support
- Questions?

Comments on milestones / research goals

- H-mode confinement, pedestal, SOL vs. current and field research incomplete (not really started)
 This milestone will be carried forward in FY18
- Similarly, fast-ion confinement & AE vs. tangency radius needs MSE + run-time (and supports JRT-18)
 – Milestone will also be carried forward in FY18
- Need sufficient time for scenario development
- Will support 2017 JRT on dissipative divertors – Participate more in DIII-D since no NSTX-U ops in FY17
- Still assessing high-Z tile installation...
 - Rajesh led first Boundary SG discussions on high-Z
 - Issues: Diagnostic coverage and scientific utility if on upper OBD, installation and alignment procedure, schedule impact