

Supported by

XP1046: Effect of externally applied 3-D fields on divertor profiles

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

J-W. Ahn¹, J.M. Canik¹, T.K. Gray¹, A. Loarte², R. Maingi¹, A.G. McLean¹, J.-K. Park³, O. Schmidtz⁴, and V. Soukhanovskii⁵ ¹ORNL, ²ITER, ³PPPL, ⁴IPP-Julich, ⁵LLNL

NSTX Team Review PPPL, June 30, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

Summary of results in FY09

- Applied 3-D fields induce strike point splitting and the vacuum field line tracing provides good agreement with measured striations in divertor profiles
- The expected periodicity of measured divertor profiles for imposed 3-D fields was confirmed experimentally
- Inclusion of plasma response does not affect the structure of split strike point significantly
- 3-D field triggered ELM heat flux appears to largely follow split strike point channels

Understanding of how divertor profiles are modified in the presence of 3-D fields is important for projection to ITER

Collisionality scan

- Data in FY09 were obtained from limited plasma conditions, *ie* v^{*}_e~1, q95~11, highly shaped (δ~0.8, κ=2.4)
 → We need a wide parameter scan to see how divertor profiles are affected by the plasma conditions
- Pedestal collisionality is a parameter revealed important for the observation of the strike point splitting in other tokamaks
 - → In DIII-D, no footprint striation was observed for $v_e^* < 0.5$
 - \rightarrow NSTX clearly showed strike point splitting at $v_e^* \sim 1$
 - \rightarrow Use natural density rise for collisionality scan
 - → Target range of scan: $0.3 \le v_e^* \le 3-4$ (135182)
 - \rightarrow Comparison of data with field line tracing
- At v^{*}_e~1, 3-D fields did not significantly change the heat and particle flux distribution despite local peaks in the profile
 - \rightarrow Any possibility of more beneficial deposition at different v_e^* ?

q95 scan

 q95 is a parameter playing an important role in determining locations of resonant surfaces

 \rightarrow Investigate effect of resonant contributions to the divertor profile modification, ie how well the rational surface locations are aligned with the peaks in the applied perturbation.

 Target range of scan: High, q95=6-7 (Ip=1.2MA), and low, q95=11 (Ip=0.8MA), points

- The striations observed at the divertor surface theoretically attributed to the long and short connection lengths originated from the pedestal region
- Ip is a well known knob to change the SOL width at the divertor surface
- By changing Ip at constant q95, we will be able to change the SOL plasma conditions with pedestal conditions unchanged
- If the observed divertor striations change with Ip, this may indicate that SOL plasma also plays a role in determining heat and particle flux profile splitting
- Two Ip points: high (Ip=1.2MA) and low (Ip=0.8MA)

- All strike point splitting discharges in FY09 were highly shaped (δ~0.8, κ=2.4), no data yet for low δ plasmas
- Shape parameter is important for the strike point splitting?
- Take data in a low δ plasma (δ~0.6) with outer strike point at the outer divertor surface (outside CHI gap)

 \rightarrow take advange of dense LP array to measure particle flux profile

Toroidal rotation of n=1 field

• Only n=3 perturbation data have been taken so far

 \rightarrow Apply n=1 perturbation to see the effect on divertor profiles

- Possibility of toroidally asymmetric heat and particle deposition with the imposed 3-D fields
 - \rightarrow n=3 not possible to rotate

→ Application of toroidally propagating n=1 fields, frequency of up to 100Hz, I_{3D} =1.5-2kA OK to avoid disruption

7

Shot plan

- Reference shot:
 135184 (Ip=800kA, Bt=0.4T, I_{3D}=-500A, No ELMs triggered)
- Use square-wave 3-D coil current waveform to limit 3-D effect to the edge of the plasma
 → duration of 35ms to cover two TS profiles with freq of 10Hz
- 2 points each for Bt (0.33, 0.5T), Ip (0.8MA, 1.2MA), and P_{NBI} (3MW, 5MW) scan: total of 8 shots
- n=3 field application to a low δ discharge (reference: 137605, δ=0.6): 2 shots
- n=1 field rotation, frequency of 10Hz and 100Hz, Maximum
 I_{3D,peak}=1.5-2kA to avoid locking: 2 shots

Total of 12 good shots needed

