

Supported by

Summary of recent L-H transition studies in NSTX

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U Old Dominion U ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

H-mode workshop Princeton, NJ Sept. 30-Oct. 2, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI KBSI KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

- XP909: P_{LH} smallest at largest R_x (lowest δ) [discussed last]
- XP922: P_{LH} increases with I_p
- *XP936*: P_{LH} increases with external applied fields

- not directly related to rotation profile

• XP941: P_{LH} increases with n_{e} and comparable for deuterium and helium

– $\rm P_{HL}$ seems comparable, but maybe independent of $\rm n_e$

- Piggyback: Lithium evaporation reduces P_{LH}
- *XP956*: P_{LH} higher in reversed B_t discharges
 - Lithium seems to have a big effect here also

* XP numbers indicate dedicated experiments in 2009

L-H Threshold Power Increases with Plasma Current in NSTX

- Evidence for this dependence found several years ago; wanted to confirm
- Need to separate effect of possibly differing $n_{\rm e}$
 - Attempt to do this did not succeed this year (MHD events at higher n_e before L-H)
 - However, HHFW expts showed $P_{LH} \sim n_e$
 - Look at both $\rm P_{LH}$ and $\rm P/n_{e}$
 - Found P_{LH}/n_e almost a factor of 2 higher for 1 than for 0.7 MA

 $I_p=0.7 \text{ MA: } P_{LH} \sim 1.6 \text{ MW}, P_{LH}/n_{e,19} \sim 0.7 \text{ MW/m}^3$ $I_p=1.0 \text{ MA: } P_{LH} \sim 3.1 \text{ MW}, P_{LH}/n_{e,19} \sim 1.2 \text{ MW/m}^3$

ONSTX

Application of n=3 Fields Results in Significantly Higher P_{LH}

- Motivated by JET ripple, DIII-D torque scan results
- Recent MAST results showed delayed transition with increasing applied field amplitude
- Apply n=3 braking to test effect on threshold power
 - Braking applied prior to L-H transition
- Found P_{LH}/n_e significantly higher with higher applied n=3

 P_{LH} increases from ~1.4 to 2.6 MW with higher n=3 current (~65% increase for P_{LH}/n_e)

Rotation Differences Do Not Appear to Play a Major Role

- Any difference in rotation does not appear to be key
 - Consistent with earlier RF vs NBI threshold expts.

L-H/H-L Power Thresholds in Pure Helium and Deuterium Plasmas Were Explored in NSTX

- High Harmonic Fast Waves (HHFW) were used to heat pure helium and deuterium plasmas
- Continuous ramping of HHFW power allowed for "fine" determination of P_{LH} and P_{HL}
- "Perturbation technique" used to determine HHFW electron heating efficiency (<0.16>±0.1)
 - Ion heating efficiency similar
 - In what follows, P_{RF} is taken to be $P_{RF,e}$

Forward or back transitions not always Obvious in D_{α} signal even for D-plasmas. - No D_{α} indication in He-plasmas

Time (s)

Use change in edge profiles as an Indication of both L-H and H-L transition

ONSTX

H-mode workshop: NSTX overview of L-H studies

L-H Transition Powers Linearly Dependent on Density; Not True for H-L Transitions

L-H Power Thresholds for He and D Similar

H-L power thresholds lower, indicating some hysteresis

Normalize $P_{RF} + P_{OH}$ by density for comparison

Large error bars due to uncertainty in heating efficiency!

Lithium Evaporation Produced Plasmas with Long ELM-free Durations in 2008 and 2009

- 200 mg of Lithium evaporated between shots
- P_{NB} from 2 to 6 MW (H-mode accessible with P_{NB} <2 MW with Lithium)

Lithium Evaporation Led to a Significant Reduction in L-H Power Threshold

- $P_{LH} \sim 2.7 \text{ MW NBI without Li evaporation } (P_{heat}/n_e \sim 0.9 \text{ MW}/10^{19} \text{ m}^3)$
 - ~ 1.4 MW NBI with Li evaporation (0.6 MW/10¹⁹ m³)

DNSTX

XP956: Reversed TF Results

- D+ plasmas with NBI used in this study
- USN vs LSN, no Li vs Li @ 200 mg/shot (4 cases)
- Have not yet done TRANSP calcs for $\mathsf{P}_{\mathsf{heat}},$ etc.
- Li has very strong effect, even in unfavorable ∇B drift direction

P _{inj}	USN	LSN
No Li	2.5 – 3.0 MW	2.9 – 3.2 MW
Li	0.4 – 0.6 MW	1.15 – 1.75 MW
Similar to LSN with normal TF		

XGC code calculations showed strongest ion loss (and E_r/E_r') near X-point at large Rx – motivated XP909

ONSTX

H-mode workshop: NSTX overview of L-H studies

P_{LH} lowest at largest R_x (lowest δ)

Three X-point radii and triangularities achieved

κ, bottom gap relatively well matched at 0.2 s, but δ_r^{sep} different P_{LH}^{NBI} lowest for $\delta_L \sim 0.4$ and comparable for higher δ_L

H-mode workshop: NSTX overview of L-H studies

Low $\delta_L \sim 0.4$ has $P_{LH}^{NBI} < 1.1$ MW

H-mode workshop: NSTX overview of L-H studies

H-mode workshop: NSTX overview of L-H studies

Medium $\delta_L \sim 0.55$ has $P_{LH}^{NBI} \leq 2$ MW

ONSTX

H-mode workshop: NSTX overview of L-H studies

Poster copies

