

<u>XP1023: Optimized RWM control for high</u> $\leq \beta_{N} \geq_{pulse}$ at low collisionality and I_i

S.A. Sabbagh, J.M. Bialek, S.P. Gerhardt, R.E. Bell, J.W. Berkery, B. LeBlanc, J.E. Menard, et al.

Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA

Princeton Plasma Physics Laboratory

NSTX Team Review

April 12th, 2010 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU **ORNL** PPPL PSI SNL **UC Davis UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching U Quebec

<u>XP1023: Optimized RWM feedback control for</u> <u>high $<\beta_N \ge_{pulse}$ at low collisionality and I</u>

Motivation

- Next-step ST devices (including the planned upgrade of NSTX) aim to operate at plasma collisionality and l_i below usual NSTX levels
- 2009 XP948 showed significantly higher RWM activity, lower $β_N$ limit, in reduced I_i plasmas ($I_i ~ 0.45$ and below)

Goals / Approach

- Improve reliability of RWM stabilization at low I_i, understand impact of reduced plasma collisionality using new LLD capability
 - Assess upper/lower RWM B_p, B_r sensors, with NEW AC compensation in feedback
 - B_r sensor feedback to provide RFA correction, B_p to provide RWM control
 - Provide superior control system settings for general NSTX XPs
 - Examine stabilization of unfavorable ω_{ϕ} profiles for RWM stability at low I₁
 - Address differences in experimental vs. single mode vs. multi-mode RWM model expectation of best spatial phase offset of lower / upper Bp sensors

Addresses

- NSTX Research Milestone R(10-1), ReNeW Thrust 16.3, 16.4
- ITPA joint experiment MDC-2, MDC-17; 2010 IAEA FEC submission

Steady-State STs Targeted to Operate High B_N/I

Common Features of Present & Future STs

- High-κ and strong shaping.
- $\cdot \beta_N$ values at or above the no-wall limit.
- Bootstrap fractions ≥50%.
- Confinement ≥ H-mode scaling.
- Comprehensive shape, profile and stability control.

Configuration Specific Features

- Range of normalized currents.
- Wide range of NBCD fractions.
- Wide range of normalized densities.

[1]: Peng, et al, PPCF 2005, Phase #3, 2 MW/m² NWL [2]: ARIES-ST

	NSTX	NSTX-U	NHTX	ST-CTF ¹	ST-Demo ²
к	2.6	2.7	3	3.1	3.5
β _N	5.7	5.7	5	4-6	7.5
l _i (1)	0.55	0.65	0.6	0.35	0.25
I _N	2.5	2.1	3	4.5	6.7
f _{GW}	0.8	0.7	0.45	0.28	0.8
f _{BS}	0.54	0.7	0.7	0.5	0.96
f_{NBCD}	15	30	0.3	0.5	0
H ₉₈	1.	1.2	1.3	1.5	1.3

S.P. Gerhardt (NSTX PAC-27)

XP1023 (Optimize RWM control low li, v) NSTX Team review 4/12/10 - S.A. Sabbagh, et al.

XP to investigate lower plasma rotation, I_i, collisionality

S.A. Sabbagh, S. Gerhardt, D. Mastrovito, D. Gates

XP934: Sabbagh (Columbia U.)

XP1023 (Optimize RWM control low li, v) NSTX Team review 4/12/10 - S.A. Sabbagh, et al.

NSTX XP948 operated very low I_i, with high probability of RWM – can these plasmas be better controlled?

- Advancement in β_N/l_i toward targets
 - 2006 value: 11
 - □ XP948 (2009): 13
 - **ST-CTF:** 16
- Uncontrolled growing RWM occurred in about 50% of shots
 - ST-CTF target must be sustained indefinitely
- What value of l_i is the current-driven kink limit (unstable any β)?
 - DCON n = 1 no-wall limit for 135111 low: $\beta_N = 2.8$ (l_i = 0.38)

XP1023 (Optimize RWM control low li, v) NSTX Team review 4/12/10 - S.A. Sabbagh, et al.

$\frac{\text{High }\beta_N \text{ difficult to access at low plasma rotation when}}{\text{RWM feedback response sufficiently slowed}}$

- Low *w*, access study for ITER
 - used n = 3 braking
 - n = 1 feedback response speed significant
 - "fast" feedback allows high $β_N$ at low $V_φ$
 - "slow" n = 1 "error field correction" (75ms smoothing of control current) suffers RWM

Large β_N excursions at low ω_{ϕ}

- Related to excursions in ω_{ϕ} as well (see next slide)
- Motivated work to reduce β_N variation

XP1023 (Optimize RWM control low li, ν) NSTX Team review 4/12/10 - S.A. Sabbagh, et al.

XP1023 (Optimize RWM control low li, v) NSTX Team review 4/12/10 - S.A. Sabbagh, et al.

Significant leverage from XPs and piggyback time will make XP1023 run efficient Change of plans!

- LLD Survey XP No survey XP yet target development in this XP
 - Some (perhaps all?) target development will be run in the LLD survey XP
- XP1019 "β_N FB" and XP1060 "RFA Suppression With Different Sensors/Time Scales in NSTX" (Gerhardt, et al.)
 - Shot plan of present XP1023 complements XP1060
 - aimed at plasmas with $\beta_N > \beta_N^{no-wall}$, to attain low I_i with long pulse
 - aimed at optimizing fast FB XP1023 will run early; support XP1020

Piggyback time

- Evaluation of new compensations on B_p and B_r RWM sensors can be evaluated in piggyback during XPs not using "standard" n = 1 feedback system
 - Additionally could run on 2nd control computer during another XP that is using n= 1 RWM feedback

XP1023 will run early: B_r sensors ready?

XP1023 (Optimize RWM control low li, ν) NSTX Team review 4/12/10 - S.A. Sabbagh, et al.

XP1023: Optimized RWM feedback control for high $\leq \beta_N \geq_{pulse}$ at low collisionality and I_i – shot plan

0) Piggyback / pre-analysis A) Determine best upper/lower RWM sensor spatial offset from experiment (with new compensations), compare to single, multi-mode VALEN expectations; (choose settings for following runs) 1) Generate low li and low collisionality targets (estimate ~ ½ day under revised schedule, no v scan w/LLD) (use low li, v target from LLD survey XP, optionally fall back on low l_i, long pulse target from 2009 (shot 135111) A) Establish target plasma (2 or 3 NBI sources) B) Generate unstable RWM (by low I_i , and/or reduce plasma rotation / alter profile by n = 3 braking)

- C) Vary I, and/ or collisionality, and/or edge pressure gradient (focus on I, under revised schedule)
- 2) Assess optimal settings for n = 1 feedback; add other tools for control/stabilization
 - A) Feedback phase scan, B_o sensors with new AC compensation; +best setting w/ AC comp. off 6
 - B) Feedback phase scan, B, sensors, new OHxTF, AC compensation; +best setting w/ AC comp. off 6
 - C) Introduce β_N feedback to run steady, high $\langle \beta_N \rangle_{\text{pulse}}$; use n = 3 braking if at unstable ω_{ϕ} for RWM 4
- 3) <u>Generate high $<\beta_N>_{pulse}$ at low ω_E </u>
 - A) Generate lowest possible ω_{ϕ} at high β_{N} with n = 1 FB on; also with AC field and no FB for Xp1020 4
 - B) Introduce β_N feedback to (A) to run steady, high $\langle \beta_N \rangle_{pulse}$
 - C) <u>RF Approach</u>: Apply best FB settings above to RF target with $\beta_N > \beta_N^{\text{no-wall}}$ (PAC recommendation) 8 (target established in other XPs (e.g. XP1012: LeBlanc RF H-mode XP, etc.)

Total: 32; 8

2

Task

2

4

4

Number of Shots

<u>XP1023: Optimized RWM feedback control for high</u> $\leq \beta_{N} \geq_{pulse}$ at low collisionality and I_{i} – Diagnostics, etc.

- Required diagnostics / capabilities
 - RWM feedback algorithm "miu" available in the PCS
 - **RWM** coils in standard n = 1,3 configuration
 - CHERS toroidal rotation measurement
 - Thomson scattering
 - MSE
 - Standard magnetics / diamagnetic loop
- Desired diagnostics
 - USXR
 - FIDA
 - FIReTip
 - Fast camera

