

GigE-V Framework
for Linux 32/64-Bit
Programmer's Manual

April 4, 2016
www.teledynedalsa.com

sensors | cameras | frame grabbers | processors | software | vision solutions

http://www.teledynedalsa.com/

NOTICE

© 2016 Teledyne DALSA, inc. All rights reserved.

This document may not be reproduced nor transmitted in any form or by any means, either electronic or
mechanical, without the express written permission of Teledyne DALSA. Every effort is made to ensure the
information in this manual is accurate and reliable. Use of the products described herein is understood to be at
the user’s risk. Teledyne DALSA assumes no liability whatsoever for the use of the products detailed in this
document and reserves the right to make changes in specifications at any time and without notice.

Linux® is a registered trademark of Linus Torvalds.

All other trademarks or intellectual property mentioned herein belongs to their respective owners.

Printed on April 4, 2016

Document Number: OC- COMM-GEVP0
Printed in Canada

About This Manual

This manual exists in Adobe Acrobat® (PDF) formats (printed manuals are available as special orders). The
PDF format make full use of hypertext cross-references. The Teledyne DALSA home page on the Internet,
located at http://www.teledynedalsa.com/imaging, contains documents, software updates, demos, errata,
utilities, and more.

About Teledyne DALSA
Teledyne DALSA is an international high performance semiconductor and electronics company that designs,
develops, manufactures, and markets digital imaging products and solutions, in addition to providing wafer
foundry services.

Teledyne DALSA Digital Imaging offers the widest range of machine vision components in the world. From
industry-leading image sensors through powerful and sophisticated cameras, frame grabbers, vision
processors and software to easy-to-use vision appliances and custom vision modules.

http://www.teledynedalsa.com/imaging

GigE-V Framework for Linux 32/64-bit Contents • 3

Contents
GIGE-V FRAMEWORK API OVERVIEW _______________________________ 4

A SIMPLE API FOR GIGE VISION CAMERAS ... 4
GETTING STARTED .. 5
PRE-REQUISITES .. 5
INSTALLATION ... 6
GIGE NETWORK ADAPTER OVERVIEW .. 8
FIRMWARE UPDATE ... 9
EXAMPLE PROGRAMS ... 10
PERFORMANCE TUNING .. 16
GIGE VISION DEVICE STATUS TOOL .. 18
GEVIPCONFIG TOOL .. 19

GIGE-V FRAMEWORK API _______________________________________ 20
API INITIALIZATION AND CONFIGURATION .. 20
AUTOMATIC CAMERA DISCOVERY ... 23
CONNECTING TO A CAMERA ... 24
CAMERA GENICAM FEATURE ACCESS - SIMPLIFIED .. 32
CAMERA GENICAM FEATURE ACCESS – MANUAL SETUP ... 39
GENICAM GENAPI FEATURE ACCESS THROUGH XML .. 42
IMAGE ACQUISITION ... 45
ASYNCHRONOUS CAMERA EVENT HANDLING .. 56
MANUAL CAMERA DETECTION AND CONFIGURATION (ADVANCED TOPIC) 60
UTILITY FUNCTIONS ... 64
OPERATING SYSTEM INDEPENDENCE WRAPPER ... 66

APPENDIX A: FEATURE ACCESS THROUGH STATIC REGISTERS __________ 67

APPENDIX B: COMMON PACKAGE MANAGEMENT METHODS IN LINUX _____ 84
SOFTWARE PACKAGE MANAGEMENT TOOLS ... 84
CLI PACKAGE MANAGEMENT COMMAND EXAMPLES (BY DISTRIBUTION)............................... 85
REQUIRED PACKAGES .. 86

CONTACT INFORMATION __ 87
SALES INFORMATION .. 87
TECHNICAL SUPPORT .. 87

4 • GigE-V Framework API Overview GigE-V Framework for Linux 32/64-bit

GigE-V Framework API Overview

A Simple API for GigE Vision Cameras
This document describes GigE-V Framework API which is a simplified, user-level API for accessing the
features of GigE Vision devices. It is implemented in the C language and has an operating system
independent layer that allows it to run, potentially, on any operating system which supports threads,
events, and a socket based network interface.

Background
The GigE Vision standard describes a set of protocols that define access methods and capabilities for
devices and applications alike. The main protocols applicable for GigE Vision cameras are GVCP (GigE
Vision Control Protocol) and GVSP (GigE Vision Streaming Protocol).

The GigE-V Framework API supports the standard register and memory area access parts of GVCP as
well as its asynchronous message channel. The API also supports image acquisition from a device
using GVSP.

The specific definitions of what is supported by a device are contained in the GigE Vision compliant
XML file provided with the device. Starting with v2.0, the GigE-V Framework API library is able to read
the XML file from the device, and associate a GenICam feature node tree with the device. For more
information on how to use the XML file see the code examples provided in this document and the
example programs supplied with the API

The GigE-V Framework API builds on the GenICam GenApi, which is included in the GigE-V Framework
API installation. For more information and documentation of the GenICam GenApi visit the EMVA
(European Machine Vision Association) website: www.emva.org/standards-technology/genicam/.

Supported Hardware Platforms
There are currently 3 architectures supported:

• x86 : Intel/AMD 32-bit and 64-bit CPUs
• ARM hard float : 32-bit ARM7 with hardware floating point
• ARM soft float : 32-bit ARM with software emulated floating point

System Requirements
• Linux OS support for Gigabit NIC hardware is required (kernel 2.6.24 and later)
• Support for PF_PACKET with RX_RING capability recommended for best performance (usually

available with the Wireshark application and/or the libpcap package which is widely installed
by default).

• libcap-dev package is required to use Linux “capabilities” when running as “root” is not
desired.

• libglade2-dev package is required for building and using the GigE Vision Device Status tool
(uses gtk).

• libx11-dev / libxext-dev packages are required for using the X11 display in the example
programs.

See Appendix B: Common Package Management methods in Linux
for information on installing the required packages and the various commands available.

Note: It is recommended to enable “jumbo” frames by setting the NIC MTU to its
maximum value (usually 9018). This can be set using “ifconfig” or a distribution-
specific tool or configuration file. Please consult the documentation for the Linux
distribution being used.

http://www.emva.org/standards-technology/genicam/

GigE-V Framework for Linux 32/64-bit GigE-V Framework API Overview • 5

Getting Started
The GigE-V Framework for Linux is distributed as a compressed tar archive, with file type “.tar.gz”.
The naming convention e of this archive is:

GigE-V-Framework_<architecture>_<Version#>.<Build#>.tar.gz

For example, the 3 available files for version 2.00 build 0.0105 are:

• GigE-V-Framework_x86_2.00.0.0105.tar.gz,
• GigE-V-Framework_ARMhf_2.00.0.0105.tar.gz, and
• GigE-V-Framework_ARMsf_2.00.0.0105.tar.gz

At this time, only target systems configured for self-hosted development are supported. At installation
time, parts of the API are compiled and linked to the run-time libraries found on the target system.
This reduces the risk of an installation package failing to work with a target system due to mismatched
versions of run-time libraries. As a consequence of this, certain pre-requisites are required for
successful installation.

Pre-requisites
To compile and link the API on installation and use the example applications that are distributed with
the framework, installation of the following packages is required:

Package Description
gcc C compiler
gcc-c++ C++ compiler
GNU make make utility
libglade2-dev Library for loading and using “.glade” UI definition files
libX11-dev Library for using basic X11 display primitives in programs
libxext-dev Library for using extended X11 display primitives in programs

In addition, the following libraries are useful for enhancing the performance of the framework.

Package Description
libpcap Library for user level packet capture
libcap Library / tools for assigning Linux “capabilities” to a program
ethtool Utility to configuring tuning parameters of NIC drivers

(usually installed by default)

For example, in Ubuntu. packages can be installed from the terminal using the following command:

sudo apt-get install <package name>

Note: The pre-requisite packages may have different names on different Linux
distributions. See Appendix B: Common Package Management methods in Linux for more
information on installing these packages and possible variations on their names.

6 • GigE-V Framework API Overview GigE-V Framework for Linux 32/64-bit

Installation
To install the GigE-V Framework for Linux is from its compressed tar archive file, start by copying it to
a base directory, usually the HOME directory of the user installing it, and extracting the files.

For example:

cp GigE-V-Framework_x86_2.00.0.0105.tar.gz $HOME
cd $HOME
tar –zxf GigE-V-Framework_x86_2.00.0.0105.tar.gz

Then, change to the directory DALSA and run the installer script.

cd DALSA
./corinstall

The script installs the GenICam SDK (v3_0 or later), if not already installed, and then configures,
compiles, links, and installs the GigE-V Framework for Linux and its API libraries. It prompts for the
administrator password when it needs to copy the various libraries to their preferred locations.

The locations used for files are as follows:

Directory Description
/opt/genicam_v3_0 GenICam SDK v3_0 files
/var/opt/genicam/xml/cache GenICam XML cache
/usr/local/lib Dynamic library files for the GigE-V Framework
/usr/dalsa/GigeV Dynamic link to $HOME/DALSA/GigeV for system wide visibility

Environment Variables
The script also adds environment variables that are needed for the GenICam installation to operate
properly. The environment variables added are :

GENICAM_ROOT = /opt/genicam_v3_0
GENICAM_ROOT_V3_0 = /opt/genicam_v3_0
GENICAM_CACHE = /var/opt/genicam/xml/cache
GENICAM_LOG_CONFIG = /opt/genicam_v3_0/log/config-unix

and
GIGEV_XML_DOWNLOAD = /usr/dalsa/GigeV

The new environment variables are visible to all subsequent login shells. After installation, for them to
be visible, the current shell should be logged out and back in again. For the case of a GUI desktop, the
user should log off and back in.

As a reminder, the installation script outputs the message :

GenICam library installation was performed - you will need to log out and back in to
properly set up the environment variables.
**

Note: The environment variables are set globally via shell scripts inside the folder
/etc/profile.d/ that are sourced at login. This configuration works for the shells bash
and csh in most Linux systems.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API Overview • 7

Note: When using “sudo” to provide the necessary permissions for the higher performance
interface, remember to use “sudo –E” or “sudo –i” to invoke an interactive (login) shell in
order to pick up the environment variables that point to the GenICam SDK installation.
These are used at runtime to be able to set up and use the GenICam XML based features.

Uninstalling
To uninstall the GigE-V Framework API, use the following steps:

cd $HOME/DALSA
./corinstall uninstall

The script prompts for the administrator password when deleting files from their install locations. In
addition, the shell scripts that define the added environment variables are removed so that the
environment variables will not be defined at the next login. Files unzipped from the .tar archive are
not removed.

The GenICam SDK, installed with the GigE-V Framework, is not uninstalled when this API is
uninstalled since it may be used with other APIs and frameworks and with newer, updated, versions of
this framework. During uninstallation, the following text reminds the user that GenICam is not
uninstalled and describes how to uninstall the GenICam SDK if required:

 Found the GenICam library installation directory at /opt/genicam_v3_0
 It is not necessary to uninstall it if it will be re-used later

 To uninstall the GenICam library use the following command :

 . /opt/genicam_v3_0/uninstall.sh

(Then you will need to log out and log in to remove the environment variables)

Please note the command line for uninstall has a <space> between the <dot> and the
script name. As in <dot><space>/opt/genicam_v3_0/uninstall.sh

8 • GigE-V Framework API Overview GigE-V Framework for Linux 32/64-bit

GigE Network Adapter Overview
GigE Vision compliant cameras connects to a computer’s Gigabit Network Adapter. If the computer is
already connected to a network, the computer requires a second network adapter, either onboard or
an additional PCIe NIC adapter. Refer to the Teledyne DALSA Network Imaging manual for information
on optimizing network adapters for GigE Vision cameras.

IP Configuration Sequence
For Teledyne DALSA GigE Vision cameras IP (Internet Protocol) Configuration sequence to assign an IP
address is executed automatically on camera power-up or when connected to a network. As a GigE
Vision compliant device, the camera attempts to assign an IP address as follows.

For any GigE Vision device, the IP configuration protocol sequence is:
• Persistent IP (if enabled)
• DHCP (if a DHCP server)
• Link-Local Address (always enabled as default)

The factory default for Teledyne DALSA GigE Vision cameras is Persistent IP disabled and DHCP
enabled with LLA always enabled as per the GigE Vision specification.

Supported Network Configurations

The camera obtains an IP address using the Link Local Address (LLA) or DHCP, by default. If required,
a persistent IP address can be assigned (refer to the Network Imaging manual).

If a DHCP server is present on the network, the camera issues a DHCP request for an IP address. The
DHCP server then provides the camera an IP address.

The LLA method, if used, automatically assigns the camera with a randomly chosen address on the
169.254.xxx.xxx subnet. After an address is chosen, the link-local process sends an ARP query with
that IP onto the network to see if it is already in use. If there is no response, the IP is assigned to the
device, otherwise another IP is selected, and the ARP is repeated. Note that the LLA mode is unable to
forward packets across routers. To use LLA, the NIC must be configured to an address on the
169.254.xxx.xxx subnet.

For example, in Ubuntu, click the network icon in the menu bar to open the Network Connections
dialog; select the NIC and click Edit to modify its parameters.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API Overview • 9

Firmware Update
The standard GenICam File Access features are used to updated the camera firmware, if the camera
supports firmware file write access. GenICam Standard Features Naming Convention (SFNC)
documentation is available at http://www.emva.org/standards-technology/genicam/.

The File Access Example demonstrates how to implement file access using the GigE-V Framework API
feature access functions.

Note: After successfully writing (uploading) a new firmware file to the camera, the camera
typically must be reset (using the GenICam DeviceReset command or power cycling the
camera) to activate the new firmware; refer to the camera documentation for more
information.

http://www.emva.org/standards-technology/genicam/

10 • GigE-V Framework API Overview GigE-V Framework for Linux 32/64-bit

Example Programs
Example programs are located in the following directory:

$HOME/DALSA/GigeV/examples

The example programs are categorized by the basic functionality they demonstrate. One category
demonstrates the use of the GigE-V Framework API itself. Another category demonstrates the use of
the GigE-V Framework to setup access to the GenApi itself, provided by the GenICam SDK that was
installed with the Framework.

Each example program directory includes a makefile to compile the example. Examples must be
compiled before using by running the make command in the example directory. For example, in
Ubuntu:

sapera@computername:~/DALSA/GigeV/examples/genicam_c_demo$ make

Note: If the make operation fails on link, verify that the required prerequisites are installed
for the given hardware architecture (for example, ARM hardfloat, ARM softfloat, and Intel
x86).

Call the program name to run program. For example, in Ubuntu, to run the program in the current
directory, precede the program name with “./”:

sapera@computername:~/DALSA/GigeV/examples/genicamdemo$./genicamconsoledemo

If multiple cameras are connected, most example programs can be invoked using a camera index
(starting from 0):

./genicamconsoledemo 1

Note: For multiple cameras on the same NIC indices are not static and are populated
dynamically when the program is run, therefore the index for a specific camera may change
depending on the order it is acknowledged when the program is run. Functions are provided
to perform automatic camera (device) discovery and enumeration; see the Automatic
Camera Discovery section. Functions are also available to open cameras by IP address,
name or serial number; see the Connecting to a Camera section for more information.

GigE-V Framework
API Examples

Description

genicam_c_demo The genicam_c_demo program, in $HOME/DALSA/GigeV/examples/genicam_c_demo,
demonstrates a grab and display application utilizing GenICam XML feature accesses
using only C language calls to the Framework API.

gevconsoledemo The gevconsoledemo program, in $HOME/DALSA/GigeV/examples/gevconsoledemo ,
demonstrates a grab and display application utilizing direct register access to the
camera. Only cameras known to the API can be used with this program since the
camera register definitions need to be hardcoded in a static table. For more information,
please see Appendix A: Feature Access Through Static Registers.

c_loadfeatures The c_loadfeatures program, in $HOME/DALSA/GigeV/examples/dump_features,
demonstrates loading {feature_name : value } pairs from a text file to the camera using
only C callable functions from the Framework API.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API Overview • 11

GenICam GenApi
API Examples

Description

genicam_cpp_demo The genicam_cpp_demo program, in
$HOME/DALSA/GigeV/examples/genicam_cpp_demo, demonstrates a grab and display
application utilizing GenICam XML feature accesses using the C++ access methods
provided by the GenApi SDK from the GenICam organization.

dumpfeatures The dumpfeatures program, in $HOME/DALSA/GigeV/examples/dump_features,
demonstrates the use of the C++ access methods provided by the GenApi SDK from
the GenICam organization to access the GenICam XML features of a camera and output
the entire hierarchy of features, including their type, to the screen.

savefeatures The savefeatures program, in $HOME/DALSA/GigeV/examples/dump_features,
demonstrates the use of the C++ access methods provided by the GenApi SDK from
the GenICam organization to access the GenICam XML features of a camera and save
the streamable features, as {feature_name : value} pairs, to the screen or to a text
file.

loadfeatures The loadfeatures program, in $HOME/DALSA/GigeV/examples/dump_features,
demonstrates the use of the C++ access methods provided by the GenApi SDK from
the GenICam organization to access the GenICam XML features of a camera in order to
load {feature_name : value} pairs, from a text file, to the camera.

genicam_fileaccessdemo The genicam_fileaccessdemo program, in
$HOME/DALSA/GigeV/examples/genicam_fileaccessdemo , demonstrates the use of the
C++ access methods provided by the GenApi SDK from the GenICam organization to
access the GenICam XML features that provide access to the file interface on the
camera. The files present can be detected and read or written, as allowed by the
definitions provided by the XML file.

Note: Running demos that display images, such as genicam_c_demo and
genicam_cpp_demo, on an ARM hard float platform using the ARM soft float package (GigE-
V-Framework_ARMsf_xxx) will not execute properly unless the required soft float library
packages are installed.

Grab Demos
The grab demo examples (genicam_c_demo and genicam_cpp_demo) demonstrate how to acquire
and display images using a continuous (grab) or single frame (snap) acquisition. The examples display
the current image and pixel format settings for the selected camera.

For a list of supported pixel formats refer to the GevGetImageParameters function description.

12 • GigE-V Framework API Overview GigE-V Framework for Linux 32/64-bit

The image is displayed in a separate window. To improve display performance, the user can optimize
the display as needed for the required platform.

Note: Depending on the image size, the display window can overlap the terminal window;
switch focus to the terminal window as required.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API Overview • 13

File Access Example
The file access example provides commands to list (L) the available files and their associated file
access privileges, read (R) files to save in the current directory, and write (W) files from the current
directory to the camera. Indices identify the available files.

Note: Refer to the camera documentation for the available files, formats and usage.

14 • GigE-V Framework API Overview GigE-V Framework for Linux 32/64-bit

Feature Access Examples
Feature access examples include the dumpfeatures, savefeatures and loadfeatures/c_loadfeatures that
demonstrate how to list the available features on a camera, output the current camera settings and
load camera settings to the camera, respectively.

The dumpfeatures example parses the xml file to extract all available features on the camera by
category and their corresponding type, displaying them in the terminal window:
Dumping feature tree :
 Category : Root
 Category : deviceInformation
 DeviceVendorName : <IString>
 DeviceFamilyName : <IString>
 DeviceModelName : <IString>
 DeviceVersion : <IString>
 deviceManufacturerPartNumber : <IString>
 DeviceManufacturerInfo : <IString>
 DeviceFirmwareVersion : <IString>
 DeviceID : <IString>
 DeviceSerialNumber : <IString>
 deviceMacAddress : <IInteger>
…
 Category : deviceSensorControl
 DeviceScanType : <IEnumeration>
 sensorColorType : <IEnumeration>
 pixelSizeInput : <IEnumeration>
 SensorWidth : <IInteger>
 SensorHeight : <IInteger>
 acquisitionFrameRateControlMode : <IEnumeration>
 AcquisitionFrameRateEnable : <IBoolean>
 AcquisitionFrameRate : <IFloat>
…
 Category : DigitalIOControl
 TriggerSelector : <IEnumeration>
 TriggerMode : <IEnumeration>
 triggerFrameCount : <IInteger>
…

The savefeatures and loadfeatures/c_loadfeatures examples export/import feature settings using a
simple text file in the following format:
<feature> <value>
<feature> <value>

For example, to save current camera feature settings to a text file (in the current directory), use the
following command:

./savefeatures <filename>.txt

When loading features, the file need only contain the feature-value pair for those features that need to
be modified. For example:

PixelFormat Mono8
OffsetX 0
OffsetY 0
Width 640
Height 480

GigE-V Framework for Linux 32/64-bit GigE-V Framework API Overview • 15

If multiple cameras are connected, the camera index is used to select the required camera.

16 • GigE-V Framework API Overview GigE-V Framework for Linux 32/64-bit

Performance Tuning
The Linux OS provides the GigE-V Framework with access to the standard network stack, suitable for
grabbing single images, and also provides a high performance network packet access mechanism,
suitable for streaming image sequences, that is traditionally used by packet sniffer applications.

To avoid packet loss on the network interface, a number of parameters may be adjusted by the user.
Important parameters to maximize are the MTU (maximum transmission unit) size and the number of
receive buffers available to the NIC driver. This helps reduce the number of packets to process and
therefore minimizes CPU overhead and interrupts.

A network tuning script provided with the API can maximize the MTU (enabling Jumbo frames) and
optimize certain network settings, including the number of receive buffers, using a standard tool
named “ethtool”. The tuning script is located in the following directory:

$HOME/DALSA/GigeV/bin/gev_nettweak

For example, to adjust network interface eth0, use the following terminal command to run the script
(administator privileges are required):

sudo $HOME/DALSA/GigeV/bin/gev_nettweak eth0

GigE-V Framework for Linux 32/64-bit GigE-V Framework API Overview • 17

The script adjusts the following parameters:

Parameter Description
MTU Maximizes the MTU (Maximal Tranmission Unit) size on the NIC. This

corresponds to the maximum packet size for image data. The use of
NIC hardware whose drivers support “Jumbo frames” aids in making
this value as large as possible (typically maximum is around 9K
bytes (9216 bytes).

net.ipv4.udp_rmem_min Adjust the receive memory allocation size in the network stack.
net.core.netdev_max_backlog Adjust the network packet backlog queue size.
net.unix.max_dgram_qlen Adjust the network queue length for UDP packets. Computes the

amount of memory for UDP packets - a maximum image size and the
number of cameras expected provide a hint for this setting.

net.core.rmem_default
net.core.rmem_max

Adjust the default (and maximum) memory for receiving network
packets.

rx_value
rx_jumbo

Use "ethtool" utility (if present) to adjust the setting of the network
device drivers to optimize the rx_ring and the rx jumbo packet queue
for maximum throughput and to disable the rx pause operation. This
improves reception of image data packets from the cameras.
(Sending to the camerais not as critical)

Access to the high performance packet access interface, mentioned above, is provided by the
PF_PACKET socket interface and is restricted to processes that have a capability set that allows
CAP_NET_RAW (permits raw access to an interface for capturing directly). Generally, this is
accomplished either by using root / sudo permissions to run the program or to have the
CAP_NET_RAW capability set up with the setcap utility that comes with the libcap library.

The ability to tune threads with specific CPU affinity values and higher priority is restricted to
processes that have the capablity set that allow CAP_SYS_NICE. Generally, this is accomplished either
by using root / sudo permissions to run the program or to have the CAP_SYS_NICE capability set up
with the setcap utility that comes with the libcap library.

Note: Some security environments can assign capabilities to executables with a
configuration file (for example, /etc/permissions.local).

Without the CAP_NET_RAW bit set, the library defaults to standard packet accesses using sockets
reading UDP (User Datagram Protocol) packets from the network stack. Various parameters in the
standard network stack can be tuned to buffer more image data. Examples of tuning these parameters
can be found in the “gev_nettweak” script that accompanies the library installation. While the
standard network socket access works for receiving images from a camera, there can be considerable
latency in frame reception as the data makes its way through the network stack. For minimal latency
and higher data rates, it is recommended that the PF_PACKET interface be used by enabling the
CAP_NET_RAW capability bit.

Note: The setcap utility usage is “setcap cap_net_raw+eip <application>”. Where
<application> is the file name of the executables being used. This includes the application
program and all the loadable libraries it uses, referenced from ldconfig instead of
LD_LIBRARY_PATH.

Note: When using “sudo” to provide the necessary permissions for the higher performance
interface, remember to use “sudo –E” or “sudo –i” to invoke an interactive (login) shell in
order to pick up the environment variables that point to the GenICam SDK installation.
These are used at runtime to be able to set up and use the GenICam XML based features.

18 • GigE-V Framework API Overview GigE-V Framework for Linux 32/64-bit

GigE Vision Device Status Tool
The GigE Vision Device Status tool lists all devices connected to the host system. Each GigE device is
listed by name along with important information such as the assigned IP address and device MAC
address.

The GigE server periodically scans the network automatically to refresh its state. It might take a few
seconds for the GigE Server to refresh its state after a GigE camera has obtained an IP address.

For example, to start the application in Ubuntu, use the File Manager to open the directory and use
the pop-up menu Run command.

Alternatively, the tool can be started directly from any local directory (it is copied to the /usr/local/bin
directory). For example, in Ubuntu:

When the application is started, the application icon is placed in the Launcher bar (in Ubuntu), from
where it can be locked to easily start the application.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API Overview • 19

gevipconfig Tool
The gevipconfig tool is a command line utility that assigns an IP address to a camera based on its MAC
address. This allows cameras to be recovered if the network addressing scheme makes them
undetectable.

The command parameters are:

Usage: gevipconfig [-p] MAC_Address IP_Address Subnet_Mask
 -p (optional) = sets address/subnet to persistent mode
 MAC_Address = aa:bb:cc:dd:ee:ff (a-f are HEX digits)
 IP_Address = A.B.C.D (A-D are decimal digits)
 Subnet_Mask = A.B.x.y (Mask for class B or C subnet)

The tool can be started directly from the local directory (it is copied to the /usr/local/bin directory).

Example usage:
To set a camera with MAC address 00:01:0D:11:08:7F to LLA mode (standard class B subnet):

gevipconfig 00:01:0D:11:08:7F 169.254.8.128 255.255.0.0

To set a camera with MAC address 00:01:0D:11:08:7F to a persistent static address of 172.10.1.4
(standard class C subnet):

gevipconfig –p 00:01:0D:11:08:7F 172.10.1.4 255.255.255.0

20 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GigE-V Framework API

API Initialization and Configuration
This section describes the API functions to initialize the API and adjust the configuration parameters
available to modify the API’s behavior.

Member Function Overview

Function Description

GevApiInitialize Function used to initialize the API.
GevApiUninitialize Function used to close (un-initialize) the API.
GevApiGetLibraryConfigOptions Gets GigE-V Framework API library user configurable

parameters.
GevApiSetLibraryConfigOptions Sets GigE-V Framework API library user configurable

parameters.

Member Function Descriptions
The following functions are members of the API Initialization and Configuration group.

GevApiInitialize

GEV_STATUS GevApiInitialize(void);

Description

Initializes the API.

Return Value

GEVLIB_OK
GEVLIB_ERROR_INSUFFICIENT_MEMORY

GevApiUninitialize

GEV_STATUS GevApiUninitialize(void);

Description

Closes (un-initialize) the API.

Return Value

GEVLIB_OK

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 21

GevApiGetLibraryConfigOptions
GevApiSetLibraryConfigOptions

GEV_STATUS GevGetLibraryConfigOptions(GEVLIB_CONFIG_OPTIONS *options);
GEV_STATUS GevSetLibraryConfigOptions(GEVLIB_CONFIG_OPTIONS *options);

Description

Obtains or updates the user configurable parameters that apply to the GigE-V Framework API library.
The configurable options are contained in a data structure of type GEVLIB_CONFIG_OPTIONS and
apply globally to the operation of the GigE-V Framework API library within the current application.

Parameters

options Pointer to a GEVLIB_CONFIG_OPTIONS structure:

typedef struct
{
 UINT32 version;
 UINT32 logLevel;
 UINT32 numRetries;
 UINT32 command_timeout_ms;
 UINT32 discovery_timeout_ms;
 UINT32 enumeration_port;
 UINT32 gvcp_port_range_start;
 UINT32 gvcp_port_range_end;
} GEVLIB_CONFIG_OPTIONS, *PGEVLIB_CONFIG_OPTIONS;

 Structure Description
 version The version of the API (it is read-only)
 logLevel The current message severity logging level for informational

messages. The logLevel can be set to select which messages are
actually output. Possible values are:

 GEV_LOG_LEVEL_OFF No logging is performed
GEV_LOG_LEVEL_NORMAL Fatal and error messages are

enabled
GEV_LOG_LEVEL_ERRORS Same as “NORMAL”
GEV_LOG_LEVEL_WARNINGS Warning messages are also

enabled
GEV_LOG_LEVEL_DEBUG Debug messages are also enabled
GEV_LOG_LEVEL_TRACE Trace messages are also enabled

The default value is GEV_LOG_LEVEL_NORMAL.

Messages are logged using GevPrint to print messages.
Messages can have the following levels of severity :

 GEV_LOG_FATAL For fatal errors.
GEV_LOG_ERROR For general errors.
GEV_LOG_WARNING For warnings
GEV_LOG_INFO For informational purposes

22 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

Important: The more types of messages that are enabled, the
more of a load is placed on the library to perform the logging.
This can lead to degradation of performance in high data rate
applications.

 numRetries Number of times a command is retried before giving up on the
command and generating an error. This is to allow some
tolerance for collisions and added traffic on the network interface
connecting the PC to the camera. (The default value is 3)

 command_timeout_ms Milliseconds the library will wait for a response to a command
before attempting to retry the command or, if the number of
retries have been exhausted, failing the command.
(The default value is 2000 msecs)

 discovery_timeout_ms Milliseconds the library will wait for a response when querying the
network for the presence of cameras. The number of retries
setting also applies to the process of querying the presence of
cameras. (The default value is 1000 msecs)

 enumeration_port IP (Internet Protocol) port on which the device
enumeration/discovery will take place. This allows for the tuning
of network port usage in a system. (The default value is 39999)

 gvcp_port_range_start
gvcp_port_range_end

Start and end IP (Internet Protocol) port numbers for the range
of ports used by the library for communicating with cameras. Port
assignments are taken as needed, from this range and returned
when they are no longer required. This allows for the tuning of
network port usage in a system.
(The default range is 40000 to 49999)

Return Value

GEVLIB_OK

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 23

Automatic Camera Discovery
Functions are provided to perform automatic camera (device) discovery and enumeration.

Member Function Overview

Function Description

GevDeviceCount Function used to query the number of cameras detected in the
system.

GevGetCameraList Function returns a list of cameras detected as present in the
system.

Member Function Descriptions
The following functions are members of the Automatic Camera Discovery group.

GevDeviceCount

int GevDeviceCount(void);

Description

Queries the number of cameras detected in the system.
Note: A number of factors determine whether connected cameras are seen in the system. Most
notably, the camera and network interface card (NIC) must be on the same IPV4 subnet.

Return Value

The return value is the number of cameras visible in the system.

GevGetCameraList

GEV_STATUS GevGetCameraList(GEV_CAMERA_INFO *cameras, int maxCameras,
 int *numCameras);

Description

Returns a list of cameras detected as present in the system.

Parameters

cameras Pointer to an array of GEV_CAMERA_INFO structures, allocated by the caller, to
contain information for the cameras detected in the system.

maxCameras Maximum number of entries in the array of GEV_CAMERA_INFO structures passed in
the ‘cameras’ parameter.

numCameras Pointer to contain the number of cameras actually detected in the system.
(Note: The number of cameras found can be larger than the number of entries in the
‘cameras’ array. In this case, only ‘maxCameras’ entries are returned in the array. The
total number of cameras in the system is returned in ‘numCameras’.)

Return Value

GEVLIB_OK.

24 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

Connecting to a Camera
After cameras are detected by the system, they can be connected to and accessed via a ‘handle’ (of
type GEV_CAMERA_HANDLE). GigE Vision makes a distinction between classes of connection. Primary
control connections and secondary control connections are supported.

A connection using the primary control channel to a camera is able to control all aspects of the camera
function including its streaming interface and its asynchronous message channel. If this connection is
exclusive, no other connections can be made to the camera. If the primary control channel is not
being used in an exclusive mode, a secondary control channel can be opened and the camera queried
for monitor access. Applications using the secondary control channel can only read from the camera
and are used only for monitoring.

The following functions provide a means to create the camera handle for device access. These
functions are compatible for use in both C and C++ language application programs.

Note: In all cases, the camera device and the NIC card must share the same IP subnet
mask.

Member Function Overview

Function Description

GevOpenCamera Creates a camera handle for accessing a camera.
GevOpenCameraByAddress Creates a camera handle for accessing a camera identified by a

its IP address.
GevOpenCameraByName Creates a camera handle for accessing a camera identified by a

its user name.
GevOpenCameraBySN Creates a camera handle for accessing a camera identified by a

its serial number.
GevCloseCamera Closes a previously opened camera handle and terminates

access.
GevGetCameraInterfaceOptions Obtains the user configurable parameters.
GevSetCameraInterfaceOptions Updates the user configurable parameters.
GevGetCameraInfo Obtains a pointer to the GEV_CAMERA_INFO structure.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 25

Member Function Descriptions
The following functions are members of the Camera Access group.

GevOpenCamera

GEV_STATUS GevOpenCamera(GEV_CAMERA_INFO *device, GevAccessMode mode,
 GEV_CAMERA_HANDLE *handle);

Description

Creates a camera handle for accessing a camera identified by an input camera information structure
(type GEV_CAMERA_INFO).

Parameters

device Pointer to a GEV_CAMERA_INFO structure,
allocated by the caller, passed in to identify the camera device to open.

mode Required access mode. The available values are:
GevExclusiveMode : Exclusive R/W access to the camera.
GevMonitorMode : Shared Read-only access to the camera.
GevControlMode : Shared R/W access to the camera.
The most commonly used mode, for user imaging applications, is GevExclusiveMode.

handle Pointer to a GEV_CAMERA_HANDLE type
Receives the allocated handle to be used to access the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_ERROR_API_NOT_INITIALIZED
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_INSUFFICIENT_MEMORY
GEVLIB_ERROR_NO_CAMERA
GEV_STATUS_ACCESS_DENIED

26 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevOpenCameraByAddress

GEV_STATUS GevOpenCameraByAddress(unsigned long ip_address,GevAccessMode mode,
 GEV_CAMERA_HANDLE *handle);

Description

Creates a camera handle for accessing a camera identified by a camera’s IP address.

Parameters

ip_address 32-bit IP address for a camera, as a number.
For example, 192.168.1.10 is 0xC0A8010A.

mode Required access mode. The available values are:
GevExclusiveMode : Exclusive R/W access to the camera.
GevMonitorMode : Shared Read-only access to the camera.
GevControlMode : Shared R/W access to the camera.

The most commonly used mode for user imaging applications is GevExclusiveMode.
handle Pointer to a GEV_CAMERA_HANDLE type

to receive the allocated handle to be used to access the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_ERROR_API_NOT_INITIALIZED
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_INSUFFICIENT_MEMORY
GEVLIB_ERROR_NO_CAMERA
GEV_STATUS_ACCESS_DENIED

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 27

GevOpenCameraByName

GEV_STATUS GevOpenCameraByName(char *name, GevAccessMode mode,
 GEV_CAMERA_HANDLE *handle);

Description

Creates a camera handle for accessing a camera identified by a camera’s user defined name. The user
defined name is a string that can be programmed into the camera for use in identifying multiple
cameras.

Parameters

name A character string (16 characters max) that will be used to match the user defined
name string contained in a camera connected on the system.

mode The required access mode. The available values are:
GevExclusiveMode : Exclusive R/W access to the camera.
GevMonitorMode : Shared Read-only access to the camera.
GevControlMode : Shared R/W access to the camera.

The most commonly used mode for user imaging applications is GevExclusiveMode.
handle Pointer to a GEV_CAMERA_HANDLE type

to receive the allocated handle to be used to access the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_ERROR_API_NOT_INITIALIZED
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_INSUFFICIENT_MEMORY
GEVLIB_ERROR_NO_CAMERA
GEV_STATUS_ACCESS_DENIED

28 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevOpenCameraBySN

GEV_STATUS GevOpenCameraBySN(char *sn, GevAccessMode mode,
 GEV_CAMERA_HANDLE *handle);

Description

Creates a camera handle for accessing a camera identified by a camera’s serial number. The serial
number is represented as a string that is programmed into the camera, by the manufacturer, to
identify a particular camera unit.

Parameters

sn A character string (16 characters max) that matches the serial number string
contained in a camera connected on the system.

mode The required access mode. The available values are:
GevExclusiveMode : Exclusive R/W access to the camera.
GevMonitorMode : Shared Read-only access to the camera.
GevControlMode : Shared R/W access to the camera.

The most commonly used mode, for user imaging applications, is GevExclusiveMode.
handle Pointer to a GEV_CAMERA_HANDLE type to receive the allocated handle used to

access the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_ERROR_API_NOT_INITIALIZED
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_INSUFFICIENT_MEMORY
GEVLIB_ERROR_NO_CAMERA
GEV_STATUS_ACCESS_DENIED

GevCloseCamera

GEV_STATUS GevCloseCamera(GEV_CAMERA_HANDLE *handle);

Description

Closes a previously opened camera handle and terminates access to the camera from the application.

Parameters

handle Pointer to a GEV_CAMERA_HANDLE type to receive the allocated handle, used to
access the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_OK

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 29

GevGetCameraInterfaceOptions, GevSetCameraInterfaceOptions

GEV_STATUS GevGetCameraInterfaceOptions(GEV_CAMERA_HANDLE handle,
 GEV_CAMERA_OPTIONS *options);

GEV_STATUS GevSetCameraInterfaceOptions(GEV_CAMERA_HANDLE handle,
 GEV_CAMERA_OPTIONS *options);

Description

These functions are used to obtain and update the user configurable parameters that apply to the
camera connection through the camera handle. The configurable options are contained in a data
structure of type GEV_CAMERA_OPTIONS and apply only to the camera accessed through the specific
camera handle.

Parameters

handle Pointer to a GEV_CAMERA_HANDLE type to receive the allocated handle, used to access
the camera.

options Pointer to a data structure of type GEV_CAMERA_OPTIONS, allocated by the caller, that
contains the parameters associated with the underlying camera handle. This type is
defined as

 typedef struct
{
 UINT32 numRetries;
 UINT32 command_timeout_ms;
 UINT32 heartbeat_timeout_ms;
 UINT32 streamPktSize;
 UINT32 streamPktDelay
 UINT32 streamNumFramesBuffered;
 UINT32 streamMemoryLimitMax;
 UINT32 streamMaxPacketResends;
 UINT32 streamFrame_timeout_ms;
 INT32 streamThreadAffinity;
 INT32 serverThreadAffinity;
 UINT32 msgChannel_timeout_ms;
} GEV_CAMERA_OPTIONS, *PGEV_CAMERA_OPTIONS;

 Structure Description
 numRetries Number of times a command is retried before giving up on

the command and generating an error. This is to allow some
tolerance for collisions and added traffic on the network
interface connecting the PC to the camera. (The default
value is 3)

 command_timeout_ms Milliseconds the library waits for a response to a command
before attempting to retry the command or, if the number of
retries have been exhausted, failing the command. (The
default value is 2000 msecs)

 heartbeat_timeout_ms Milliseconds the library and camera waits for contact
between the application and the camera before the camera
decides that the application is unresponsive and releases the
connection. (The default value is 10000 msecs)

 streamPktSize Size, in bytes, of the data packets used for streaming data
from the camera. This value is determined algorithmically
when the camera is opened and can be overridden by setting
a new value using this parameter. The new value must be
less than the NIC MTU (maximum transmission unit) size.

30 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

 streamPktDelay Time delay, in microsecond, between packets sent from the
camera. It can be used to adjust the performance of the
packet streaming on busy network segments. (The default is
0).

 streamNumFramesBuffered Sets the number of frames that can be buffered concurrently
in an internal list. These frames remain in the list until their
acquisition is completed either successfully, or with some
error condition caused by problems encountered during the
acquisition. With a good connection to the camera, the
number of frames actually being buffered at any given time
is one. The default is 4. The minimum is 2.

 streamMemoryLimitMax Maximum amount of memory to use (puts an upper limit on
the number of frames to buffer).

 streamMaxPacketResends Maximum number of packet resends to allow for a frame
(defaults to 100).

 The time, in milliseonds, that a frame is active in the internal
buffering list before it is completed with a timeout error. The
time is measured from the reception of the first packet for
the frame from the camera. The default is 1000 ms.

 streamFrame_timeout_ms Milliseconds, following the reception of the start of a frame,
that the API waits for a frame to be completed. If this time is
exceeded, the frame is delivered to the application with the
status member of the GEVBUF_HEADER structure set to
GEV_FRAME_STATUS_TIMEOUT.

 streamThreadAffinity CPU index (0 to 1023) used to specify a particular CPU on
which to create the streaming packet receive thread when
running a multi-CPU system. A value of “-1” allows the
thread to be created on whatever default CPU the OS
chooses. A value that is larger than the number of CPUs in a
system is treated as if it is “-1”. (The default is -1)

 serverThreadAffinity CPU index (0 to 1023) used to specify a particular CPU on
which to create the high performance packet server thread
when running a multi-CPU system. The packet server thread
reads packets from the PF_PACKET socket interface which
intercepts network data before it is written into the systems
network stack. A value of “-1” allows the thread to be
created on whatever default CPU the OS chooses based on
its (fairly reasonable) load balancing algorithm. A value that
is larger than the number of CPUs in a system is treated as if
it is “-1”. (The default is -1)

 msgChannel_timeout_ms Milliseconds that the asynchronous messaging thread waits
during its periodic checks for asynchronous messages from
the camera. (The default is 1 second)

Return Value

GEV_STATUS

Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEV_STATUS_NULL_PTR

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 31

GevGetCameraInfo

GEV_CAMERA_INFO *GevGetCameraInfo(GEV_CAMERA_HANDLE handle);

Description

Obtains a pointer to the GEV_CAMERA_INFO structure stored internally in the camera handle.

Parameters

handle Pointer to a GEV_CAMERA_HANDLE type to receive the allocated handle, used to access
the camera.

Return Value

Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE

32 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

Camera GenICam Feature Access - Simplified
This section describes the functions provided for accessing camera features defined by the GenICam
compatible definitions obtained from the vendor supplied XML data corresponding to the camera.
These functions are compatible for use in both C and C++ language application programs.

Member Function Overview

Function Description

GevInitGenICamXMLFeatures Initializes access to GenICam features based on the
XML file in the camera.

GevInitGenICamXMLFeatures_FromFile Initializes access to GenICam features based on an
XML file on disk.

GevInitGenICamXMLFeatures_FromData Initializes access to GenICam features based on XML
data in a string.

GevGetGenICamXML_FileName Retrieves the name of the file (if any) used to initialize
the GenICam features.

GevGetFeatureValue Retrieves the value of a GenICam feature, as well as
its type, by name.

GevSetFeatureValue Sets the value of a GenICam feature, by name.
GevGetFeatureValueAsString Retrieves a string representation of the value of a

GenICam feature, as well as its type, by name.
GevSetFeatureValueAsString Sets the value of a GenICam feature, by name, via a

string representation of the value.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 33

Member Function Descriptions
The following functions are members of the Camera GenICam Feature Access group.

GevInitGenICamXMLFeatures

GEV_STATUS GevInitGenICamXMLFeatures(GEV_CAMERA_HANDLE handle, BOOL updateXMLFile);
Description

Retrieves the GenICam XML file from the camera and uses it to initialize internal access to the
GenICam GenApi via an internal GenApi::CNodeMapRef object connected to the camera. Optionally,
the XML file read from the camera is stored to disk.

Parameters

handle Handle to the camera.
updateXMLFile The GenApi:CNodeMapRef object is created from the XML data retrieved from the

camera accessed via the camera handle.
If this flag is false, the XML file is not stored to disk.
If this flag is true, the XML file is stored to disk. The location (path) to the stored XML
files will be relative to the GIGEV_XML_DOWNLOAD environment variable. The path
will be
$GIGEV_XML_DOWNLOAD/xml/download. If that location is not writable by the
application, the XML file will be stored in the “current” directory that the executable is
running in.

Return Value

GEVLIB_OK on success

GevInitGenICamXMLFeatures_FromFile

GEV_STATUS GevInitGenICamXMLFeatures_FromFile(GEV_CAMERA_HANDLE handle,
 char *xmlFileName);
Description

Initializes internal access to the GenICam GenApi, using the GenICam XML file identified by name, via
an internal GenApi::CNodeMapRef object connected to the camera.

Parameters

Handle Handle to the camera.
xmlFileName Full path name of the XML file used to create the GenAPI::CNodeMapRef object.

34 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevInitGenICamXMLFeatures_FromData

GEV_STATUS GevInitGenICamXMLFeatures_FromData(GEV_CAMERA_HANDLE handle, int size,
 void *xmlDataBuffer);
Description

Initializes internal access to the GenICam GenApi, using the GenICam XML data string contained in
the xmlDataBuffer, via an internal GenApi::CNodeMapRef object connected to the camera .

Parameters

handle Handle to the camera.
size Size (in bytes) of the XML data string passed in (including the terminating NULL ‘\0’).

To aid in detection of an invalid XML definition.
xmlDataBuffer Data array (string) containing a properly qualified XML definition for creating the

GenApi::CNodeMapRef object.

GevGetGenICamXML_FileName

GEV_STATUS GevGetGenICamXML_FileName(GEV_CAMERA_HANDLE handle, int size,
 char *xmlFileName);

Description

Returns the full path name of the XML file that was used to create the GenApi::CNodeMapRef object
containing the feature tree for the camera.

Note: If the XML data is from a string/data buffer, or from the camera but not stored on disk, then the
returned file name is blank.

Parameters

handle Handle to the camera.
size Size (in bytes) allocated to hold the full path name of the XML file currently in use.
xmlFileName The full path name of the XML file that is in use.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 35

GevGetFeatureValue

GEV_STATUS GevFeatureValue(GEV_CAMERA_HANDLE handle, const char *feature_name,
 int *feature_type, int value_size, void *value);

Description

Retrieves the value of a feature as well as its type.
This function is intended to be used from C code, where the GenApi object class accesses are not
supported.

Note : The corresponding GenApi::CNodeMapRef object must already be associated with the camera
handle via call to GevConnectFeatures.
Parameters

handle Handle to the camera.
feature_name String containing the name of the feature to be accessed.
feature_type Pointer to storage to the feature type being returned. This is the integer version

of the GenApi::EInterfacetype associated with the feature node accessed by
name. The valid values are :

GENAPI_UNUSED_TYPE = 1 for intfIBase/intfIValue/intfICategory that
 are not accessible from C code.
GENAPI_INTEGER_TYPE = 2 for GenApi::EInterfaceType intfIInteger
GENAPI_BOOLEAN_TYPE = 3 for GenApi::EInterfaceType intfIBoolean
GENAPI_COMMAND_TYPE = 4 for GenApi::EInterfaceType intfICommand
GENAPI_FLOAT_TYPE = 5 for GenApi::EInterfaceType intfIFloat
GENAPI_STRING_TYPE = 6 for GenApi::EInterfaceType intfIString
GENAPI_REGISTER_TYPE = 7 for GenApi::EInterfaceType intfRegister
GENAPI_ENUM_TYPE = 9 for GenApi::EInterfaceType intfIEnum
GENAPI_ENUMENTRY_TYPE = 10 for GenApi::EInterfaceType intfIEnumEntry

value_size Size, in bytes, of the storage pointed to by “value” that receives the data
contained at the feature node being accessed.

value Pointer to storage at which to return the data read from the feature node.
Return Value

GEVLIB_OK on success.

36 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevSetFeatureValue

GEV_STATUS GevSetFeatureValue(GEV_CAMERA_HANDLE handle, const char *feature_name,
 int value_size, void *value);

Description

Writes the value of a feature.
This function is intended to be used from C code, where the GenApi object class accesses are not
supported.

Note : The corresponding GenApi::CNodeMapRef object must already be associated with the camera
handle via call to GevConnectFeatures.
Parameters

handle Handle to the camera.
feature_name String containing the name of the feature to be accessed.
value_size Size, in bytes, of the storage pointed to by “value” that contains the data to be

written to the feature node being accessed.
Note: The feature node already knows the type of data that it expects.

value Pointer to storage at which the data to be written is located.
Return Value

GEVLIB_OK on success.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 37

GevGetFeatureValueAsString

GEV_STATUS GevGetFeatureValueAsString(GEV_CAMERA_HANDLE handle, const char
*feature_name,
 int *feature_type, int value_string_size,
 char *value_string);

Description

Reads the value of a feature and returns it as a string representation.
This function is useful in C and C++ code, especially for representing feature names and values in a
GUI program.

Note : The corresponding GenApi::CNodeMapRef object must already be associated with the camera
handle via call to GevConnectFeatures.
Parameters

handle Handle to the camera.
feature_name String containing the name of the feature to be accessed.
feature_type Pointer to storage to the feature type being returned. This is the integer version

of the GenApi::EInterfacetype associated with the feature node accessed by
name. The valid values are :

GENAPI_UNUSED_TYPE = 1 for intfIBase/intfIValue/intfICategory that
 are not accessible from C code.
GENAPI_INTEGER_TYPE = 2 for GenApi::EInterfaceType intfIInteger
GENAPI_BOOLEAN_TYPE = 3 for GenApi::EInterfaceType intfIBoolean
GENAPI_COMMAND_TYPE = 4 for GenApi::EInterfaceType intfICommand
GENAPI_FLOAT_TYPE = 5 for GenApi::EInterfaceType intfIFloat
GENAPI_STRING_TYPE = 6 for GenApi::EInterfaceType intfIString
GENAPI_REGISTER_TYPE = 7 for GenApi::EInterfaceType intfRegister
GENAPI_ENUM_TYPE = 9 for GenApi::EInterfaceType intfIEnum
GENAPI_ENUMENTRY_TYPE = 10 for GenApi::EInterfaceType intfIEnumEntry

value_string_size Size, in bytes, of the storage pointed to by “value_string” that is to contain string
version of the feature value.

value_string Pointer to storage at which string version of the value is copied on return.
Return Value

GEVLIB_OK on success.

38 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevSetFeatureValueAsString

GEV_STATUS GevSetFeatureValueAsString(GEV_CAMERA_HANDLE handle, const char
*feature_name,
 int value_string_size, char *value_string);

Description

Writes the value of a feature using its string representation.
This function is useful in C and C++ code, especially for representing feature names and values in a
GUI program.

Note : The corresponding GenApi::CNodeMapRef object must already be associated with the camera
handle via call to GevConnectFeatures.
Parameters

handle Handle to the camera.
feature_name String containing the name of the feature to be accessed.
value_string_size Size, in bytes, of the storage pointed to by “value_string” that contains the string

version of the feature value.
value_string Pointer to storage for the string version of the value being written.
Return Value

GEVLIB_OK on success.

Example Code (C language syntax):

GEV_DEVICE_INTERFACE pCamera[MAX_CAMERAS] = {0};
int numCamera = 0;
int camIndex = 0;
int type;
GEV_CAMERA_HANDLE handle = NULL;
char xmlFileName[MAX_PATH] = {0};
UINT32 height, width, size;
char pixelfmt[64] = {0};

// Get camera list.
GevGetCameraList(pCamera, MAX_CAMERAS, &numCamera);

// Open the camera you want
GevOpenCamera(&pCamera[camIndex], GevExclusiveMode, &handle);

// Set up feature access using the XML file retrieved from the camera
GevInitGenICamXMLFeatures(handle, TRUE);

// Example of getting the XML file name (where it was stored)
GevGetGenICamXML_FileName(handle, sizeof(xmlFileName), xmlFileName);

// Get the image dimensions, payload size, and format.
GevGetFeatureValue(handle, “Height”, &type, sizeof(height), &height);
GevGetFeatureValue(handle, “Width”, &type, sizeof(width), &width);
GevGetFeatureValue(handle, “PayloadSize”, &type, sizeof(size), &size);

GevGetFeatureValueAsString(handle, “PixelFormat”, &type, sizeof(pixelfmt), pixelfmt);

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 39

Camera GenICam Feature Access – Manual Setup

This section describes the functions provided for manually setting up access to XML-defined GenICam
features. The functions show how to retrieve the XML definitions from a camera, how to instantiate a
GenICam feature node tree, how to associate/connect the node tree to a camera.

Member Function Overview

Function Description

Gev_RetrieveXMLData Retrieves the XML data from the camera.
Gev_RetrieveXMLFile Retrieves the XML file from the camera.
GevConnectFeatures Connects a feature node map to a camera handle.
GevGetFeatureNodeMap Retrieves a pointer to a feature node map from a handle.

Member Function Descriptions
The following functions are members of the Camera GenICam Feature Access (Manual Setup) group.

Gev_RetrieveXMLData

GEV_STATUS Gev_RetrieveXMLData(GEV_CAMERA_HANDLE handle, int size, char *xml_data,
 int *num_read, int *data_is_compressed);

Description

Retrieves XML data used for the camera from the camera itself. The data is returned in the location
pointed to by the input data buffer. The number of bytes read from the camera is also returned.
Note: If the input buffer pointer is NULL, the function returns the required size of the XML data buffer.
Parameters

handle Handle to the camera.
size Size (in bytes) of the XML data buffer passed in.
xml_data Pointer to storage to hold XML data read from the camera.
num_read Pointer to hold the number of bytes read from the camera. If the “xml_data”

pointer is NULL, the required buffer size is returned here.
data_is_compressed Pointer to hold a flag indicating if the returned XML data is compressed (1 for

true) or not (0 for false)
Return Value

GEVLIB_OK on success.

40 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

Gev_RetrieveXMLFile

GEV_STATUS Gev_RetrieveXMLFile(GEV_CAMERA_HANDLE handle, char *filename, int size,
 BOOL force_download);

Description

Retrieves the name of the XML file to use for the camera. If the XML file has not yet been
downloaded from the camera, it is downloaded and stored in the subdirectory
'xml/<manufacturer>' of the installation directory pointed to by the GIGEV_XML_DOWNLOAD
environment variable.

If the GIGEV_XML_DOWNLOAD environment variable is not set, the XML file is stored in the
'xml/<manufacturer>' subdirectory of the program executing.

Generally, once the XML file is already on the local disk, it is not downloaded again. If the
"force_download" flag is set, the XML file is downloaded, regardless of whether it is on the disk or
not.

Parameters

handle Handle to the camera.
filename Pointer to a string to receive the XML file name (as stored in the camera)
size Number of bytes available to store the file name in the filename string.
force_download If TRUE, the XML file is always downloaded from the camera overwriting the file on

disk.
If FALSE, the XML file is downloaded from the camera only if it does not exist on
disk.

Return Value

GEVLIB_OK on success.

GevConnectFeatures

GEV_STATUS GevConnectFeatures(GEV_CAMERA_HANDLE handle, void *featureNodeMap);

Description

Connects a GenApi::CNodeMapRef object with the device port associated with the camera handle. The
CNodeMapRef object is passed in as a void pointer.
Note: There is no way for the API to verify, ahead of time, that the void pointer provided is indeed a
pointer to a valid GenApi::CNodeMapRef object. An error is returned, however, if the GenApi
environment throws an exception while attempting to use the pointer as a GenApi::CNodeMapRef for
the connection to the device port

Parameters

handle Handle to the camera.
featureNodeMap Void pointer that is assumed to point to a GenApi::CNodeMapRef object that is to

be associated with the input camera handle. The feature node map is accessed to
initialize internal access to mandatory features as well as some useful ones.

Return Value

GEVLIB_OK on success.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 41

GevGetFeatureNodeMap

void * GevGetFeatureNodeMap(GEV_CAMERA_HANDLE handle);

Description

Returns, as a void pointer, a pointer to a GenApi::CNodeMapRef object that was previously associated
with the camera handle by a call to GevConnectFeatures. This allows the pointer to be retrieved from
the API for use in cases where only the camera handle is available.
Note: There is no way for the API to enforce that the passed in void pointer is indeed a pointer to a
valid GenApi::CNodeMapRef object.
If the pointer returned is NULL, then either it was not originally associated with the handle or an error
occurred during the call to GevConnectFeatures.
Parameters

handle Handle to the camera.
Return Value

A non-NULL pointer on success. A NULL pointer on error.

42 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GenICam GenApi Feature Access through XML
This section describes how to use the GenApi feature node tree directly. Code examples, in C++, are
given to aid in using the GenApi interface provided by the GenICam standard libraries.

Example C++ Code: Simplified Access to GenICam Feature Node Map

GEV_DEVICE_INTERFACE pCamera[MAX_CAMERAS] = {0};
int numCamera = 0;
int camIndex = 0;
GEV_CAMERA_HANDLE handle = NULL;

// Get camera list.
GevGetCameraList(pCamera, MAX_CAMERAS, &numCamera);

// Open the camera you want
GevOpenCamera(&pCamera[camIndex], GevExclusiveMode, &handle);

// Set up feature access using the XML file retrieved from the camera
GevInitGenICamXMLFeatures(handle, TRUE);

// Set up feature access using the XML file retrieved from the camera

 GenApi::CNodeMapRef *Camera = \
 static_cast<GenApi::CNodeMapRef*>(GevGetFeatureNodeMap(handle));

 < … GenApi access to features from here on via pointer to Camera object … >

Example C++ Code: Retrieve a Pointer to the GenICam Feature Node
Map and Use GenApi Directly

 GenApi::CNodeMapRef *pCamera = \
 static_cast<GenApi::CNodeMapRef*>(GevGetFeatureNodeMap(handle));

 if (pCamera)
 {

 // Access the features (by pointer)
 GenApi::CIntegerPtr ptrIntNode = pCamera->_GetNode("Width");
 UINT32 width = (UINT32) ptrIntNode->GetValue();
 ptrIntNode = pCamera->_GetNode("Height");
 UINT32 height = (UINT32) ptrIntNode->GetValue();

 GenApi::CEnumerationPtr ptrEnumNode = pCamera->_GetNode("PixelFormat") ;
 format = (UINT32)ptrEnumNode->GetIntValue();

 }

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 43

For developers wanting to handle the management of the XML and feature node map themselves,
either to wrap it all in an application level class or to alter the default handling of the XML, the
following code examples are provided.

Example C++ Code: Read XML as Data and Manually Instantiate a
GenICam Feature Node Map for the Camera

GEV_DEVICE_INTERFACE pCamera[MAX_CAMERAS] = {0};
int numCamera = 0;
int camIndex = 0;
GEV_CAMERA_HANDLE handle = NULL;
GenApi::CNodeMapRef Camera;

// Get camera list.
GevGetCameraList(pCamera, MAX_CAMERAS, &numCamera);

// Open the camera you want
GevOpenCamera(&pCamera[camIndex], GevExclusiveMode, &handle);

// Retrieve the XML data from the camera
{

int xmlFileSize = 0;
 char *pXmlData;
 BOOL compressed_data = 0;

 Gev_RetrieveXMLData(handle, 0, NULL, &xmlFileSize);
 xmlFileSize = (xmlFileSize + 3) & (~3));
 pXmlData = (char *)malloc(xmlFileSize + 1);
 Gev_RetrieveXMLData(handle, xmlFileSize, pXmlData, &xmlFileSize, &compressed_data);
 pXmlData[xmlFileSize] = 0;
 GenICam::gcstring xmlStr(pXmlData);

 // Generate the feature node map from the XML data.

 if (compressed_data)
 {
 Camera._LoadXMLFromZIPData(xmlStr);
 }
 else
 {
 Camera._LoadXMLFromString(xmlStr);
 }
 free(pXmlData);
}

// Connect the camera to the feature map
GevConnectFeatures(handle, (void *)&Camera);

 < … GenApi access to features from here on via Camera object … >

44 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

Example C++ Code: Store XML File and Manually Instantiate a
GenICam Feature Node Map for the Camera

GEV_DEVICE_INTERFACE pCamera[MAX_CAMERAS] = {0};
int numCamera = 0;
int camIndex = 0;
GEV_CAMERA_HANDLE handle = NULL;
GenApi::CNodeMapRef Camera;

// Get camera list.
GevGetCameraList(pCamera, MAX_CAMERAS, &numCamera);

// Open the camera you want
GevOpenCamera(&pCamera[camIndex], GevExclusiveMode, &handle);

// Retrieve the XML data from the camera
{
 char xmlFileName[MAX_PATH] = {0};
 status = Gev_RetrieveXMLFile(handle, xmlFileName, sizeof(xmlFileName), FALSE);
 if (status == GEVLIB_OK)
 {
 printf("XML stored as %s\n", xmlFileName);
 Camera._LoadXMLFromFile(xmlFileName);
 }
}

// Connect the camera to the feature map
GevConnectFeatures(handle, (void *)&Camera);

 < … GenApi access to features from here on via Camera object … >

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 45

Image Acquisition
This section describes functions that are used for performing image acquisition.

Member Function Overview

Function Description

GevGetImageParameters Gets the image parameters from the camera.
GevSetImageParameters Sets the image parameters from the camera.
GevInitImageTransfer Initializes a streaming transfer to the list of buffers indicated.
GevInitializeImageTransfer Initializes a streaming transfer to the list of buffers indicated.
GevFreeImageTransfer Frees a streaming transfer to the list of buffers indicated.
GevStartImageTransfer Starts the streaming transfer.
GevStopImageTransfer Stops the streaming transfer.
GevAbortImageTransfer Stops the streaming transfer immediately.
GevGetImageBuffer Returns the pointer to the most recently acquired image buffer

data.
GevGetImage Returns the pointer to the most recently acquired image object.
GevWaitForNextImageBuffer Waits for the next image to be acquired and returns the pointer to

the image data.
GevWaitForNextImage Waits for the next image object to be acquired and returns its

pointer.

GevGetNextImage Waits for the next image object to be acquired and returns its
pointer.

GevReleaseImageBuffer Releases an image object back to the acquisition process for re-
use.

GevReleaseImage Releases an image object back to the acquisition process for re-
use.

Structure Definition: GEVBUF_HEADER
The image buffer header structure is defined as follows:
typedef struct
{
 UINT32 state; // State of buffer (full / empty) – not yet used.
 UINT32 status; // Frame Status as GEV_FRAME_STATUS_* (see below)
 UINT32 timestamp_hi; // MSB of time stamp (device dependent meaning)
 UINT32 timestamp_lo; // LSB of time stamp (device dependent meaning)
 UINT32 recv_size; // Received size for buffer (allows variable sized
data).
 UINT32 id; // Block id for image (starts at 1, wraps to 1 at 65535).
 UINT32 h; // Received heigth for this buffer
 UINT32 w; // Received width for this buffer
 UINT32 x_offset; // Received x offset for origin of ROI in this buffer
 UINT32 y_offset; // Received y offset for origin of ROI in this buffer
 UINT32 x_padding; // Received x padding bytes
 UINT32 y_padding; // Received y padding bytes
 UINT32 d, // Received depth (bytes per pixel) for this buffer
 UINT32 format; // Received format for image.
 PUINT8 address; // Memory address for image data.
} GEVBUF_HEADER, *PGEVBUF_HEADER;

46 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

For the various frame reception functions (GevWaitForNextImage, GevGetNextImage) the status of
the image data should be checked by looking at the “status” member of the GEVBUF_HEADER to
verify if all the data was received.

The actual image data received so far is present in the data buffer pointed to by "address" but the
data may be incomplete if the “status” member is not 0.

Frame Status values returned by the status member are :

Define Value Definition

GEV_FRAME_STATUS_RECVD 0 Frame is complete.

GEV_FRAME_STATUS_PENDING 1 Frame is not ready.

GEV_FRAME_STATUS_TIMEOUT 2 Frame was not ready before timeout condition
met.

GEV_FRAME_STATUS_OVERFLOW 3 Frame was not complete before the max number
of frames to buffer queue was full.

GEV_FRAME_STATUS_BANDWIDTH 4 Frame had too many resend operations due to
insufficient bandwidth.

GEV_FRAME_STATUS_LOST 5 Frame had resend operations that failed.

Member Function Descriptions
The following functions are members of the Image Acquisition group.

GevGetImageParameters, GevSetImageParameters

GEV_STATUS GevGetImageParameters(GEV_CAMERA_HANDLE handle, PUINT32 width,
 PUINT32 height, PUINT32 x_offset, PUINT32 y_offset,
 PUINT32 format);

GEV_STATUS GevSetImageParameters(GEV_CAMERA_HANDLE handle, UINT32 width,
 UINT32 height, UINT32 x_offset, UINT32 y_offset,
 UINT32 format);

Description

Gets/sets image parameters from the camera. The current height, width, x/y origin, and image data format can be
manipulated with these functions. (Note : Some cameras allow the format of the image data to be changed whereas
others do not.)

Parameters

width Image width setting (in pixels).
height Image height setting (in lines).
x_offset Image X (pixel) origin (in pixels).
y_offset Image Y (line) origin (in lines).
format Enumerated value for image format. The value depend on the camera model. Possible

values are:
 fmtMono8 0x01080001 8 Bit Monochrome Unsigned
 fmtMono8Signed 0x01080002 8 Bit Monochrome Signed

 fmtMono10 0x01100003 10 Bit Monochrome Unsigned

 fmtMono10Packed 0x010C0004 10 Bit Monochrome Packed

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 47

 fmtMono12 0x01100005 12 Bit Monochrome Unsigned

 fmtMono12Packed 0x010C0006 8 Bit Monochrome Packed

 fmtMono14 0x01100025 14 Bit Monochrome Unsigned

 fmtMono16 0x01100007 16 Bit Monochrome Unsigned

 fMtBayerGR8 0x01080008 8-bit Bayer

 fMtBayerRG8 0x01080009 8-bit Bayer

 fMtBayerGB8 0x0108000A 8-bit Bayer

 fMtBayerBG8 0x0108000B 8-bit Bayer

 fMtBayerGR10 0x0110000C 10-bit Bayer

 fMtBayerRG10 0x0110000D 10-bit Bayer

 fMtBayerGB10 0x0110000E 10-bit Bayer

 fMtBayerBG10 0x0110000F 10-bit Bayer

 fMtBayerGR12 0x01100010 12-bit Bayer

 fMtBayerRG12 0x01100011 12-bit Bayer

 fMtBayerGB12 0x01100012 12-bit Bayer

 fMtBayerBG12 0x01100013 12-bit Bayer

 fmtRGB8Packed 0x02180014 8 Bit RGB Unsigned in 24bits

 fmtBGR8Packed 0x02180015 8 Bit BGR Unsigned in 24bits

 fmtRGBA8Packed 0x02200016 8 Bit RGB Unsigned

 fmtBGRA8Packed 0x02200017 8 Bit BGR Unsigned

 fmtRGB10Packed 0x02300018 10 Bit RGB Unsigned

 fmtBGR10Packed 0x02300019 10 Bit BGR Unsigned

 fmtRGB12Packed 0x0230001A 12 Bit RGB Unsigned

 fmtBGR12Packed 0x0230001B 12 Bit BGR Unsigned

 fmtRGB10V1Packed 0x0220001C 10 Bit RGB custom V1 (32bits)

 fmtRGB10V2Packed 0x0220001D 10 Bit RGB custom V2 (32bits)

 fmtYUV411packed 0x020C001E YUV411 (composite color)

 fmtYUV422packed 0x0210001F YUV422 (composite color)

 fmtYUV444packed 0x02180020 YUV444 (composite color)

 fmtRGB8Planar 0x02180021 RGB8 Planar buffers

 fmtRGB10Planar 0x02300022 RGB10 Planar buffers

 fmtRGB12Planar 0x02300023 RGB12 Planar buffers

 fmtRGB16Planar 0x02300024 RGB16 Planar buffers

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID
(GEV_REGISTER struct is not for an Integer register)
GEVLIB_ERROR_ARG_INVALID (GEV_REGISTER definition is invalid)
GEVLIB_ERROR_SOFTWARE
(GEV_REGISTER struct defines an unsupported register type)

48 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevInitImageTransfer

GEV_STATUS GevInitImageTransfer(GEV_CAMERA_HANDLE handle, GevBufferCyclingMode mode,
 UINT32 numBuffers, UINT8 **bufAddress);

Description

Initializes a streaming transfer to the list of buffers indicated. The buffer cycling mode is also set.

Parameters

handle Handle to the camera.
mode Buffer cycling mode. Can be either :

Asynchronous: All buffers available all the time with no protection between the
application and the acquisition process.
Or
SynchronousNextEmpty; Buffers obtained by the application are available only to
the application until released back to the acquisition process. Buffers are filled in the
order they are released back to the acquisition process. If there are no more buffers
available to the acquisition process, subsequent images are not stored to memory and
are deemed to have been sent to the “trash”.

numBuffers Number of buffers addresses in array.
bufAddress Array of buffer addresses (already allocated).

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID
(GEV_REGISTER struct is not for an Integer register)
GEVLIB_ERROR_ARG_INVALID
(GEV_REGISTER definition is invalid)
GEVLIB_ERROR_SOFTWARE
(GEV_REGISTER struct defines an unsupported register type)
Note: Errors include attempting to initialize the transfer on a connection that is not set
up for streaming.

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 49

GevInitializeImageTransfer

GEV_STATUS GevInitializeImageTransfer(GEV_CAMERA_HANDLE handle, UINT32 numBuffers,
 UINT8 **bufAddress);

Description

Initializes a streaming transfer to the list of buffers indicated.
The transfer is set up with the Asynchronous cycling mode.

Parameters

handle Handle to the camera.
numBuffers Number of buffers addresses in array.
bufAddress Array of buffer addresses (already allocated).

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID
(GEV_REGISTER struct is not for an Integer register)
GEVLIB_ERROR_ARG_INVALID
(GEV_REGISTER definition is invalid)
GEVLIB_ERROR_SOFTWARE
(GEV_REGISTER struct defines an unsupported register type)

Note: Errors include attempting to initialize the transfer on a connection that is not set
up for streaming.

GevFreeImageTransfer

GEV_STATUS GevFreeImageTransfer(GEV_CAMERA_HANDLE handle);

Description

Frees a streaming transfer to the list of buffers indicated.

Parameters

handle Handle to the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_TIMEOUT (streaming thread did not respond within 5 seconds)

50 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevStartImageTransfer

GEV_STATUS GevStartImageTransfer(GEV_CAMERA_HANDLE handle, UINT32 numFrames);

Description

Starts the streaming transfer.

Parameters

handle Handle to the camera
numFrames Number of frames to be acquired (-1 for continuous).

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEV_STATUS_BUSY (camera is busy reconfiguring – try again later)

GevStopImageTransfer

GEV_STATUS GevStopImageTransfer(GEV_CAMERA_HANDLE handle);

Description

Stops the streaming transfer.

Parameters

handle Handle to the camera

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE (other errors from GevRegisterWriteInt)

GevAbortImageTransfer

GevAbortImageTransfer(GEV_CAMERA_HANDLE handle);

Description

Stops the streaming transfer immediately.

Parameters

handle Handle to the camera

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE (other errors from GevRegisterWriteInt)

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 51

GevGetImageBuffer

GEV_STATUS GevGetImageBuffer(GEV_CAMERA_HANDLE handle, void **image_buffer_ptr);

Description

Returns the pointer to the most recently acquired image buffer data. If no buffer has been acquired, a
NULL pointer is returned with a timeout condition.

Parameters

handle Handle to the camera
image_buffer_ptr Pointer to receive the image buffer data pointer.

Return Value

GEV_STATUS Possible values are
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_TIME_OUT
GEVLIB_ERROR_NULL_PTR

GevGetImage

GEV_STATUS GevGetImage(GEV_CAMERA_HANDLE handle,
 GEV_BUFFER_OBJECT **image_object_ptr);

Description

Returns the pointer to the next acquired image object acquired images.
If no images are available in the queue, a NULL pointer is returned.

Parameters

handle Handle to the camera
image_object_ptr Pointer to receive the image object pointer.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_TIME_OUT
GEVLIB_ERROR_NULL_PTR

52 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevWaitForNextImageBuffer

GEV_STATUS GevWaitForNextImageBuffer(GEV_CAMERA_HANDLE handle,
 void **image_buffer_ptr, UINT32 timeout);

Description

Waits for the next image to be acquired and returns the pointer to the image data. If no buffer has
been acquired before the timeout period expires, a NULL pointer is returned.

Parameters

handle Handle to the camera
image_buffer_ptr Pointer to receive the image buffer data pointer.
timeout Timeout period (in msec) to wait for the next.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_TIME_OUT
GEVLIB_ERROR_NULL_PTR

GevWaitForNextImage

GEV_STATUS GevWaitForNextImage(GEV_CAMERA_HANDLE handle,
 GEV_BUFFER_OBJECT **image_object_ptr, UINT32 timeout);

Description

Waits for the next image object to be acquired and returns its pointer. If no buffer has been acquired
before the timeout period expires, a NULL pointer is returned.

Parameters

handle Handle to the camera
image_object_ptr Pointer to receive the image object pointer.
timeout Timeout period (in msec) to wait for the next frame.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_TIME_OUT
GEVLIB_ERROR_NULL_PTR

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 53

GevGetNextImage

GEV_STATUS GevGetNextImage(GEV_CAMERA_HANDLE handle,
 GEV_BUFFER_OBJECT **image_object_ptr,
 struct timeval *pTimeout);

Description

Waits for the next image object to be acquired and returns its pointer. If no buffer has been acquired
before the timeout period expires, a NULL pointer is returned.

Parameters

handle Handle to the camera
image_object_ptr Pointer to receive the image object pointer.
pTimeout Pointer to a struct timeval (microsecond precision) for the timeout period to wait

for the next frame.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_TIME_OUT
GEVLIB_ERROR_NULL_PTR

GevReleaseImageBuffer

GEV_STATUS GevReleaseImageBuffer(GEV_CAMERA_HANDLE handle, void **image_buffer_ptr);

Description

Releases an image object back to the acquisition process for re-use. The image object is identified
from the image buffer pointer passed in to the function. It is mandatory to call this function for a
transfer using the SynchronousNextEmpty cycle mode in order to avoid running out of images for the
acquisition process to fill. It is not necessary to call this function for a transfer using the Asynchronous
cycle mode..

Parameters

handle Handle to the camera
image_buffer_ptr Pointer to the image buffer data for the image object being released,.

Return Value

GEV_STATUS Possible values are
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID
GEVLIB_ERROR_ARG_INVALID

54 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevReleaseImage

GEV_STATUS GevReleaseImage(GEV_CAMERA_HANDLE handle,
 GEV_BUFFER_OBJECT **image_object_ptr);

Description

Releases an image object back to the acquisition process for re-use. It is mandatory to call this
function for a transfer using the SynchronousNextEmpty cycle mode in order to avoid running out of
images for the acquisitions process to fill. It is not necessary to call this function for a transfer using
the Asynchronous cycle mode..

Parameters

handle Handle to the camera
image_object_ptr Pointer to the image object begin released.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID
GEVLIB_ERROR_ARG_INVALID

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 55

GevQueryImageTransferStatus

GEV_STATUS GevQueryImageTransferStatus(GEV_CAMERA_HANDLE handle,
 PUINT32 pTotalBuffers, PUINT32 pNumUsed,
 PUINT32 pNumFree, PUINT32 pNumTrashed,
 GevBufferCyclingMode *pMode);

Description

Releases an image object back to the acquisition process for re-use. It is mandatory to call this
function for a transfer using the SynchronousNextEmpty cycle mode in order to avoid running out of
images for the acquisitions process to fill. It is not necessary to call this function for a transfer using
the Asynchronous cycle mode..

Parameters

handle Handle to the camera
pTotalBuffers Pointer to receive the total number of buffers in the transfer list.
pNumUsed Pointer to receive the number of filled buffers ready to be received from the transfer

list.
pNumFree Pointer to receive the number of empty (free) buffers that are available to be filled.
pNumTrashed Pointer to receive the total number of buffers that have been “trashed” so far. (i.e.

Frames that are dropped when there are no more empty buffers to fill but image data
has still been received).

pMode Pointer to receive the current buffer cycling mode (Asynchronous=0,
SynchronousNextEmpty=1).

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID
GEVLIB_ERROR_ARG_INVALID

56 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

Asynchronous Camera Event Handling
The GVCP asynchronous message channel is available only to applications using the primary control
channel. Support for it is automatically enabled when a camera is opened with access mode
GevExclusiveMode or GevControlMode.

The supported EVENT_CMD and EVENTDATA_CMD events are found in the device’s XML file. Signaling
of these events needs to be enabled via calls to GevWriteReg using the proper address and enable
values.

GigE-V Framework API allows an application to register two actions for an event. On receipt of an
event, an application may have a callback function invoked and/or an event object can be signaled. In
this case the application event is signaled before the callback function is invoked. A single call to
GevUnregisterEvent will cause both the application event and the callback function to be unregistered.

Note that the callback is performed synchronously with the delivery of the event message from the
camera. Care should be taken to complete the callback processing quickly so that subsequent
messages are not lost. If lengthy processing is required, the callback is responsible for saving the
contents of the EVENT_MSG data structure and the “data” buffer and signaling some other
asynchronous processing context (thread) to perform that processing. Once the callback function
returns, the contents of the EVENT_MSG structure (msg) and the ‘data’ buffer are no longer valid and
will be overwritten by the asynchronous message.

The following functions provide this service.

Member Function Overview

Function Description

GEVEVENT_CBFUNCTION Type Definition
GevRegisterEventCallback Register an Event Callback
GevRegisterApplicationEvent Register an Application Event
GevUnregisterEvent Un-register an Application Event

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 57

Member Function Descriptions
The following functions are members of the Asynchronous Camera Event Handling group.

GEVEVENT_CBFUNCTION

typedef void (*GEVEVENT_CBFUNCTION)
 (PEVENT_MSG msg, PUINT8 data, UINT16 size, void *context);

Parameters

msg Pointer to an EVENT_MSG structure containing information on the intercepted event.
Here the data structure is defined as :
typedef struct
{
 UINT16 reserved;
 UINT16 eventNumber;
 UINT16 streamChannelIndex;
 UINT16 blockId;
 UINT32 timeStampHigh;
 UINT32 timeStampLow;
} EVENT_MSG, *PEVENT_MSG;

 where:
 eventNumber The event number that caused the callback to be invoked.
 streamChannelIndex The streaming data channel identifier that caused the event to

be sent in the first place.
 blockId The blockId associated with this event.
 timeStampHigh

timeStampLow
64-bit timestamp identifying when the event occurred with
respect to the camera’s timestamp timebase.

data Pointer to event data returned from the camera if the particular event intercepted also
sends data. It is NULL if not data has been sent.

size Size of the event data returned by the camera.
(It is zero if the particular event intercepted does not send any data).

context Pointer to context data set up at the time of the callback’s registration.

Return Value

VOID

58 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevRegisterEventCallback

GEV_STATUS GevRegisterEventCallback(GEV_CAMERA_HANDLE handle, UINT32 EventID,
 GEVEVENT_CBFUNCTION func, void *context);

Description

Registers an Event Callback

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose events are to be intercepted by
the application.

EventID Specific EventID of the event to be intercepted. They are usually defined in the XML
file for the camera.

func Function to call when EventID is signaled. The function is of type
GEVEVENT_CBFUNCTION.

context Pointer to context data set up at the time of the callback’s registration and passed to
‘func’.

Return Value

GEV_STATUS GEVLIB Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEV_STATUS_ERROR (too many registration calls have been made for this
camera – 16 maximum)

GevRegisterApplicationEvent

GEV_STATUS GevRegisterApplicationEvent(GEV_CAMERA_HANDLE handle,
 UINT32 EventID, _EVENT appEvent);

Description

Registers an Application Event

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose events are to be intercepted by
the application.

EventID Specific EventID of the event to be intercepted. They are usually defined in the XML
file for the camera.

appEvent Event handle. The _EVENT type is aliased to the HANDLE data type used by the
CorW32 helper library that provides WIN32-like constructs to the Linux environment.
In this case, the HANDLE is for a WIN32-like event that is, essentially, a thin wrapper
around a pthread condition variable.

Return Value

GEV_STATUS GEVLIB Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEV_STATUS_ERROR (too many registration calls have been made for this
camera – 16 maximum)

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 59

GevUnregisterEvent

GEV_STATUS GevUnregisterEvent(GEV_CAMERA_HANDLE handle, UINT32 EventID);

Description

Un-register an Application Event

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose events are to be intercepted by
the application.

EventID The particular EventID of the event to be intercepted. They are usually defined in the
XML file for the camera.

Return Value

GEV_STATUS GEVLIB Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEV_STATUS_ERROR (eventID not found)

60 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

Manual Camera Detection and Configuration
(Advanced Topic)
For situations where the automatic detection and configuration of cameras is not desired, functions are
provided to manually set up the camera in the system.

Member Function Overview

Function Description

GevEnumerateNetworkInterfaces Function used to fill a list of network interfaces visible from
the application.

GevEnumerateGevDevices Function used to fill a list of device interfaces visible from
the application through a particular network interface.

GevSetCameraList Function used to manually fill the internal camera
information list.

GevForceCameraIPAddress Function used to force the IP address of a device to a
known value.

GevReconnect Function used to reconnect a camera that has become
disconnected.

Structure Definition: GEV_NETWORK_INTERFACE
typedef struct
{
 BOOL fIPv6;
 UINT32 ipAddr;
 UINT32 ipAddrLow;
 UINT32 ipAddrHigh;
 UINT32 ifIndex;
} GEV_NETWORK_INTERFACE, *PGEV_NETWORK_INTERFACE;

Where:
 fIPv6 Is TRUE/FALSE for the NIC having an IPv6 address.

 (GigE Vision is currently only supported on IPv4).
 ipAdd 32-bit IP address (IPv4) for the NIC card.
 ipAddrLow Low 32-bits of a 64-bit IPv6 address for the NIC card.

 (GigE Vision is currently only supported on IPv4).
 ipAddrHigh High 32-bits of a 64-bit IPv6 address for the NIC card.

 (GigE Vision is currently only supported on IPv4).
 ifIndex The O/S internal index of the network interface, set by the system.

 It is required for the GigE-V Framework API under Linux to provide access to the
 high performance packet interface (PF_PACKET protocol).

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 61

Structure Definition: GEV_CAMERA_INFO
typedef struct
{
 BOOL fIPv6;
 UINT32 ipAddr;
 UINT32 ipAddrLow;
 UINT32 ipAddrHigh;
 UINT32 macLow;
 UINT32 macHigh;
 GEV_NETWORK_INTERFACE host;
 UINT32 capabilities;
 char manufacturer[65];
 char model[65];
 char serial[65];
 char version[65];
 char username[65];
} GEV_CAMERA_INFO, *PGEV_CAMERA_INFO;

Member Function Descriptions
The following functions are members of the Manual Camera Detection and Configuration (Advanced
Topic) group.

GevEnumerateNetworkInterfaces

GEV_STATUS GevEnumerateNetworkInterfaces(GEV_NETWORK_INTERFACE *pIPAddr,
 UINT32 maxInterfaces,
 PUINT32 pNumInterfaces);

Description

Fills a list of network interfaces visible from the application.

Parameters

pIPAddr Network interface data structure (GEV_NETWORK_INTERFACE) to contain
information found for NIC cards in the system.

maxInterfaces Maximum number of interfaces for which there is storage in pIPAddr.
pNumIntefaces Number of network interfaces found.

Return Value

GEV_STATUS Always returns success (GEV_STATUS_SUCCESS / GEVLIB_OK)

62 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

GevEnumerateGevDevices

GEV_STATUS GevEnumerateGevDevices(GEV_NETWORK_INTERFACE *pIPAddr,
 UINT32 discoveryTimeout,
 GEV_DEVICE_INTERFACE *pDevice, UINT32 maxDevices,
 PUINT32 pNumDevices);

Description

Fills a list of device interfaces visible from the application through a particular network interface.

Parameters

pIPAddr Pointer to the GEV_NETWORK_INTERFACE structure to use to query the
attached network for the presence of GigE Vision camera devices.

discoveryTimeout Time, in milliseconds, to wait for a response from cameras on the attached
network.

pDevice Pointer to an array of GEV_NETWORK_INTERFACE (aka
GEV_CAMERA_INTERFACE) structures to contain information for cameras found
on the attached network.

maxDevices Maximum number of entries in the list pointed to by pDevice.
pNumDevices Pointer to contain the number of devices found on the network.

Return Value

GEV_STATUS Possible values are:
GEV_STATUS_SUCCESS
GEV_STATUS_ERROR (an internal error in the library)

GevSetCameraList

GEV_STATUS GevSetCameraList(GEV_CAMERA_INFO *cameras, int numCameras);

Description

Manually fills the internal camera list containing information on the GigE Vision device of interest to
the API. This allows an application to manually set up only the cameras it is interested in and skip the
"automatic" detection step.
Note: If the camera list is set manually (with at least one camera), all calls to the GevGetCameraList
function will return this manually set list. No further automatic detection will be performed. Automatic
detection can be re-enabled by setting a zero length (NULL) camera list with this function.

Parameters

camera Pointer to a list of GEV_CAMERA_INFO entries.
numCameras Number of camera / device entries in the list

Return Value

GEV_STATUS Only returns GEVLIB_OK

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 63

GevForceCameraIPAddress

GEV_STATUS GevForceCameraIPAddress(UINT32 macHi, UINT32 macLo, UINT32 IPAddress,
 UINT32 subnetmask);

Description

Forces the IP address of a device to a known value. It allows for recovery from incorrect IP address
configuration. The device is identified by its MAC address and uses the known network interface list
(stored internally) to locate and access the camera for reconfiguration.

Parameters

macHi Hi 16 bits of the 48 bit MAC address for device.
macLo Low 32 bits of the 48 bit MAC address for device.
ip IP address to assign to the device when it is fond. (IPv4).
subnetmask Subnet mask to be assigned to the camera when it is found.

Return Value

GEV_STATUS Possible values are:
GEV_STATUS_SUCCESS
GEV_STATUS_ERROR
NOTE: A returned error may indicate that the command was silently discarded rather
than being an actual error.

Gev_Reconnect

GEV_STATUS Gev_Reconnect(GEV_CAMERA_HANDLE handle);

Description

Reconnects a camera that has become disconnected. A camera can become disconnected when it is
temporarily/briefly unplugged from the network. A disconnected camera cannot always be restored
using this function. If an error is returned, the program should consider closing and re-opening the
camera and restarting any initialized transfers.

Note: A disconnection that results in the camera losing its IP address – through a power cycle,
through having the camera’s heartbeat timer expire (usually due to running an application in a
debugger and remaining too long at a breakpoint), or through unplugging the network cable when the
camera is not in a persistent IP address mode.

Parameters

handle Camera handle

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEV_STATUS_ERROR (camera is not actually disconnected)
Other error from writing to the camera.

64 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

Utility Functions
The following functions are provided as useful utility functions for manipulating image formats used to
define image buffer storage.

GevGetPixelSizeInBytes

UINT32 GevGetPixelSizeInBytes(UINT32 pixelType);

Description

Returns the number of bytes taken up by the input raw (GigE Vision) image format.

Parameters

pixelType GigE Vision pixel data format.

Return Value

UINT32 Size of the pixel in bytes

GevGetPixelDepthInBits

UINT32 GevGetPixelDepthInBits(UINT32 pixelType);

Description

Returns the number of bits taken up by a single color channel in a pixel for the input raw (GigeVision)
image format. It is intended for simplifying display and LUT functions.
Note: YUV composite color pixel formats need to be converted to an RGB equivalent. The various
Y/U/V packed combinations may be (incorrectly) treated as 8 bit data.

Parameters

pixelType GigE Vision pixel data format.

Return Value

UINT32 The depth of the pixel in bits

GevIsPixelTypeMono, GevIsPixelTypeRGB, GevIsPixelTypePacked

BOOL GevIsPixelTypeMono(UINT32 pixelType);

BOOL GevIsPixelTypeRGB(UINT32 pixelType);

BOOL GevIsPixelTypePacked(UINT32 pixelType);

Description

Returns true/false for the various image pixel types (mono, RGB, packed).

Parameters

pixelType GigE Vision pixel data format.

Return Value

BOOL True/False (for the condition queried).

GigE-V Framework for Linux 32/64-bit GigE-V Framework API • 65

GevTranslateRawPixelFormat

GEV_STATUS GevTranslateRawPixelFormat(UINT32 rawFormat, PUINT32 translatedFormat,
 PUINT32 bitDepth, PUINT32 order);

Description

Translates an input raw (GigeVision) image format into information useful during image display.

Parameters

rawFormat GigE Vision pixel data format.
translatedFormat Simplified version of the format. Possible values are:

GEV_PIXEL_FORMAT_MONO, GEV_PIXEL_FORMAT_MONO_PACKED,
GEV_PIXEL_FORMAT_RGB, GEV_PIXEL_FORMAT_RGB_PACKED,
GEV_PIXEL_FORMAT_BAYER, GEV_PIXEL_FORMAT_YUV,
GEV_PIXEL_FORMAT_RGB_PLANAR

bitDepth Number of bits in a mono pixel or in each color channel..
order Color channel order. Possible values are:

GEV_PIXEL_ORDER_NONE (for MONO and YUV)
GEV_PIXEL_ORDER_RGB,
GEV_PIXEL_ORDER_BGR,
GEV_PIXEL_ORDER_GRB,,
GEV_PIXEL_ORDER_GBR,
GEV_PIXEL_ORDER_RGB10V1 (a custom 10-bit RGB)
GEV_PIXEL_ORDER_RGB10V2 (a custom 10-bit RGB)

Return Value

BOOL True/False (for the condition queried).

66 • GigE-V Framework API GigE-V Framework for Linux 32/64-bit

Operating System Independence Wrapper
The OS Independence wrapper provides a compatibility layer allowing GigE-V Framework API to be
(potentially) used in multiple operating system environments. It uses functions from the WIN32
compatibility library (libCorW32) provided with the installation.

Function Overview

Function Description

BOOL _CreateEvent (_EVENT *pEvent);
BOOL _DestroyEvent (_EVENT *pEvent);
BOOL _WaitForEvent (_EVENT *pEvent, UINT32 timeout);
BOOL _ClearEvent (_EVENT *pEvent);
BOOL _SetEvent (_EVENT *pEvent);

Event objects:
Required functions for
manual reset event
signaling

BOOL _InitCriticalSection (_CRITICAL_SECTION *pCSection);
BOOL _ReleaseCriticalSection (_CRITICAL_SECTION *pCSection);
BOOL _EnterCriticalSection (_CRITICAL_SECTION *pCSection);
BOOL _LeaveCriticalSection (_CRITICAL_SECTION *pCSection);

Critical Section objects
required functions

BOOL _CreateThread (unsigned _stdcall fct(void *), void *context,
int priority, _THREAD *pThread);
BOOL _WaitForThread (_THREAD *pThread, UINT32 timeout);

Thread objects required
functions:

GigE-V Framework for Linux 32/64-bit Appendix A: Feature Access Through Static Registers • 67

Appendix A: Feature Access
Through Static Registers
Camera register access functions using the GEV_REGISTER structure. Standard features are
implemented as simple registers using a static device-specific table of GEV_REGISTER structure
definitions.

Note : These function operate outside of the GenICam XML based feature access functions (see above)
and require manual configuration of the static register table in order to work. They remain in the API
for support of legacy applications and memory constrained embedded environments.

Member Function Overview

Function Description

GevGetCameraRegisters Get the Camera Registers
GevSetCameraRegInfo Set the Camera Register Info
GevInitCameraRegisters Initialize Camera Registers
GevGetNumberOfRegisters Get the number of Camera register entries configured for the

camera
GevReadRegisterByName Read the contents of a Camera Register by name.
GevWriteRegisterByName Write the contents of a Camera Register byname.
GevGetRegisterNameByIndex Get the name of a Camera register entry based on its index
GevGetRegisterByName Get a Camera Register structure by name
GevGetRegisterPtrByName Get a Pointer to a Camera Register structure by name
GevGetRegisterByIndex Get a Camera Register structure by index
GevGetRegisterPtrByIndex Get a Pointer to a Camera Register structure by index.
GevRegisterRead Read Register (a generic register access function)
GevRegisterWrite Write Register (a generic register access function)
GevRegisterWriteNoWait Write Register without waiting for an ack (a generic register

access function)
GevRegisterWriteArray Write multiple values to a memory area.
GevRegisterReadArray Read multiple values from a memory area.
GevRegisterWriteInt Write an integer to a register (an integer register access

function)
GevRegisterReadInt Read an integer from a register (an integer register access

function)
GevRegisterWriteFloat Write a float to a register (a float register access function)
GevRegisterReadFloat Read a float from a register (a float register access function)

68 • Appendix A: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

Member Function Descriptions
The following functions are members of the Camera Register / Feature Access group. They operate on
the GEV_REGISTER data structure.

For informational purposed, this data structure is defined as:

typedef struct
{
 char featureName[FEATURE_NAME_MAX_SIZE]; // String name of feature for this register.
 UINT32 address; // Address for accessing feature in camera
 // NOREF_ADDR if not in camera).
 RegAccess accessMode; // RO, WO, RW access allowed.
 BOOL32 available; // True if feature is available (in camera or not)
 // False is not available.
 RegType type; // String, Float, Integer, Enum, Bit, Area, Fixed …
 UINT32 regSize; // Size of storage for register
 // (or register set / area).
 UINT32 regStride; // Increment between register items accessed via selector
 UINT32 minSelector; // Minimum value for selector
 // (corresponds to base address).
 UINT32 maxSelector; // Maximum value for selector.
 GENIREG_VALUE. value; // Current value
 // (storage for features not backed by a register).
 GENIREG_VALUE minValue; // Minimum allowable value.
 GENIREG_VALUE maxValue; // Maximum allowable value.
 UINT32 readMask; // AND Mask for read (integers only)
 UINT32 writeMask; // AND Mask for write (integers only)
 PGENICAM_FEATURE feature; // Pointer to feature in feature table (future).
 char selectorName[FEATURE_NAME_MAX_SIZE]; // String name of register-based selector
 // for feature.
 char indexName[FEATURE_NAME_MAX_SIZE]; // String name of index (second selector)
 // for feature.
} GEV_REGISTER, *PGEV_REGISTER;

Some functions operate on the DALSA_GENICAM_GIGE_REGS data structure (refer to the gevapi.h file
in the DALSA/GigeV/include directory) which is a set of GEV_REGISTER structures organized along the
lines of the GenICam Standard Features Naming Convention (SFNC) version 1.2.1. The SFNC
documentation is available at http://www.emva.org/standards-technology/genicam/.

Note: The GEV_REGISTER structure and its access methods are a work-in-progress. While the
functions in the API are expected to remain the same, the underlying setup of the GEV_REGISTER
structures used by a device will change.

http://www.emva.org/standards-technology/genicam/

GigE-V Framework for Linux 32/64-bit Appendix A: Feature Access Through Static Registers • 69

GevGetCameraRegisters

GEV_STATUS GevGetCameraRegisters(GEV_CAMERA_HANDLE handle,
 DALSA_GENICAM_GIGE_REGS *camera_registers,
 int size);

Description

Gets the Camera Registers stored with the camera’s handle.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera to be accessed.
*camera_registers Pointer to a structure, allocated by the application, to contain the camera

registers.
size Size of the camera registers structure, in bytes.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR

GevSetCameraRegInfo

GEV_STATUS GevSetCameraRegInfo(GEV_CAMERA_HANDLE handle, cameraType type,
 BOOL fSupportedDalsaCamera,
 DALSA_GENICAM_GIGE_REGS *camera_registers, int size);

Description

Sets the Camera Register Info

Parameters

handle GEV_CAMERA_HANDLE identifying the camera to be accessed.
type Type of the camera.
fSupportedDalsaCamera True if the camera is a supported Teledyne DALSA camera.
*camera_registers Pointer to the camera registers structure to be assigned to the camera

handle,
size Size of the camera registers structure.

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR

70 • Appendix A: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

GevInitCameraRegisters

GEV_STATUS GevInitCameraRegisters(GEV_CAMERA_HANDLE handle);

Description

Initializes Camera Registers.
For supported Teledyne DALSA cameras, this is automatically done when the camera is opened. Users
generating their own camera register structure should see ‘cameraregdata.c’ in order to have this
function set up their registers automatically.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose registers are to be initialized.

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_SOFTWARE (camera registers structure is not properly set up)
GEVLIB_ERROR_NULL_PTR

GevGetNumberOfRegisters

GEV_STATUS GevGetNumberOfRegisters(GEV_CAMERA_HANDLE handle, UINT32 *pNumReg);

Description

Gets the number of Camera register entries configured for the camera.
Returns the number of valid GEV_REGISTER structures defined in the camera handle.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose registers are to be accessed.
pNumReg Pointer to storage to return the number of valid GEV_REGISTER structures in.

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR

GigE-V Framework for Linux 32/64-bit Appendix A: Feature Access Through Static Registers • 71

GevReadRegisterByName

GEV_STATUS GevReadRegisterByName(GEV_CAMERA_HANDLE handle, char *name, int selector,
 UINT32 size, void *data);

Description

Reads a camera register, identified by name. A helper function using the pattern
GevGetRegisterPtrByName and GevRegisterRead.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
name Name to use to search for a GEV_REGISTER structure for the camera.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

size Size of the data to be read.
*data Pointer to a location, allocated by the caller, to receive the data to be read.

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_RESOURCE_NOT_ENABLED
 (GEV_REGISTER struct is for a register that is not
available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Write-
Only register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct defines an unsupported
register type)

72 • Appendix A: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

GevWriteRegisterByName

GEV_STATUS GevWriteRegisterByName (GEV_CAMERA_HANDLE handle, char *name,
 int selector, UINT32 size, void *data);

Description

Writes a camera register, identified by name. A helper function using the pattern
GevGetRegisterPtrByName and GevRegisterWrite

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
name Name to use to search for a GEV_REGISTER structure for the camera.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

size Size of the data being written.
*data Pointer to the data to be written.

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_RESOURCE_NOT_ENABLED
 (GEV_REGISTER struct is for a register that is not
available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Read-Only
register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct defines an unsupported
register type)

GigE-V Framework for Linux 32/64-bit Appendix A: Feature Access Through Static Registers • 73

GevGetRegisterNameByIndex

GEV_STATUS GevGetRegisterNameByIndex(GEV_CAMERA_HANDLE handle, UINT32 index,
 int size, char *name);

Description

Gets the name of a Camera register entry based on its index.
Returns the name of a GEV_REGISTER structure defined in the camera handle based on the input
index.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose registers are to be accessed.
index Index to use to access the available GEV_REGISTER structures for the camera.
size Number of bytes available to store the name (should be FEATURE_NAME_MAX_SIZE

(48)).
name Pointer to storage to return the name of the register structure in.

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR

GevGetRegisterByName

GEV_STATUS GevGetRegisterByName(GEV_CAMERA_HANDLE handle, char *name,
 GEV_REGISTER *pReg);

Description

Gets a Camera Register structure by name.
This function finds and returns a GEV_REGISTER structure from the camera using the name of the
GEV_REGISTER structure. If the name is not matched in the list of registers, an error is returned.
Note: The name is case-sensitive.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose registers are to be accessed.
name The name to use to search for a GEV_REGISTER structure for the camera.
pReg Pointer to a GEV_REGISTER data structure, allocated by the application, to contain

the GEV_REGISTER data copied from the internal camera configuration data,

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR

74 • Appendix A: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

GevGetRegisterPtrByName

GEV_STATUS GevGetRegisterPtrByName(GEV_CAMERA_HANDLE handle, char *name,
 GEV_REGISTER **pReg);

Description

Gets a pointer to a Camera Register structure by name.
This function finds and returns a pointer to a GEV_REGISTER structure from the camera using the
name of the GEV_REGISTER structure. If the name is not matched in the list of registers a NULL
pointer is returned.
Note: The name is case sensitive.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose registers are to be accessed.
name Name to use to search for a GEV_REGISTER structure for the camera.
pReg Pointer to hold a pointer to a GEV_REGISTER data structure, obtained from the

internal camera configuration data,

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR

GevGetRegisterByIndex

GEV_STATUS GevGetRegisterByIndex(GEV_CAMERA_HANDLE handle, UINT32 index,
 GEV_REGISTER *pReg);

Description

Gets a Camera Register structure by index.
This function finds and returns a GEV_REGISTER structure from the camera using the index of the
GEV_REGISTER structure.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose registers are to be accessed.
index Index to use to access the available GEV_REGISTER structures for the camera.
pReg Pointer to a GEV_REGISTER data structure, allocated by the application, to contain

the GEV_REGISTER data copied from the internal camera configuration data,

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR

GigE-V Framework for Linux 32/64-bit Appendix A: Feature Access Through Static Registers • 75

GevGetRegisterPtrByIndex

GEV_STATUS GevGetRegisterPtrByIndex(GEV_CAMERA_HANDLE handle, UINT32 index,
 GEV_REGISTER **pReg);

Description

Gets a pointer to a Camera Register structure by index.
This function finds and returns a pointer to a GEV_REGISTER structure from the camera using the
index of the GEV_REGISTER structure.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera whose registers are to be accessed.
index Index to use to access the available GEV_REGISTER structures for the camera.
pReg Pointer to hold a pointer to a GEV_REGISTER data structure, obtained from the

internal camera configuration data,

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_NULL_PTR

GevRegisterRead

GEV_STATUS GevRegisterRead(GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,
 int selector, UINT32 size, void *data);

Description

Reads the specified register (a generic register access function)

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

size Size of the data to be read.
*data Pointer to a location, allocated by the caller, to receive the data to be read.

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_RESOURCE_NOT_ENABLED
 (GEV_REGISTER struct is for a register that is not
available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Write-
Only register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct defines an unsupported
register type)

76 • Appendix A: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

GevRegisterWrite

GEV_STATUS GevRegisterWrite(GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,
 int selector, UINT32 size, void *data);

Description

Writes a value to a specified register (a generic register access function)

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

size Size of the data being written.
*data Pointer to the data to be written.

Return Value

GEV_STATUS STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_RESOURCE_NOT_ENABLED
 (GEV_REGISTER struct is for a register that is not
available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Read-Only
register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct defines an unsupported
register type)

GigE-V Framework for Linux 32/64-bit Appendix A: Feature Access Through Static Registers • 77

GevRegisterWriteNoWait

GEV_STATUS GevRegisterWriteNoWait(GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,
 int selector, UINT32 size, void *data);

Description

Writes a value to a register without waiting for an acknowledgment that the write succeeded. (A
generic register access function).
Note: Writing without waiting for an ack will queue writes in the camera. Eventually the caller should
perform a write with an ack in order to make sure all of the queued writes complete before the queue
overflows. The number of writes that can be safely queued is dependent on the camera itself. For
Teledyne DALSA cameras, this is typically at least 16 write,

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

size Size of the data being written.
*data Pointer to the data being written.

Return Value

GEV_STATUS Possible values are
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE

GEVLIB_ERROR_RESOURCE_NOT_ENABLED
(GEV_REGISTER struct is for a register that is not available)

GEVLIB_ERROR_NOT_IMPLEMENTED
(GEV_REGISTER struct is for a Read-Only register)

GEVLIB_ERROR_SOFTWARE
(GEV_REGISTER struct defines an unsupported register type)

78 • Appendix A: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

GevRegisterWriteArray

GEV_STATUS GevRegisterWriteArray(GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,
 int selector, UINT32 array_offset,
 UINT32 num_entries, void *data);

Description

Writes an array of 32-bit values to a memory area on the camera.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure. This is generally 0.
array_offset Start offset into the array.
num_entries Number of entries to be written starting at the start offset.
*data Pointer to the data to be written.

Return Value

GEV_STATUS Possible values are :
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_RESOURCE_NOT_ENABLED (GEV_REGISTER struct is for a register
that is not available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Read-Only
register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct does not define an array

GigE-V Framework for Linux 32/64-bit Appendix A: Feature Access Through Static Registers • 79

GevRegisterReadArray

GEV_STATUS GevRegisterReadArray(GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,
 int selector, UINT32 array_offset,
 UINT32 num_entries, void *data);

Description

Reads an array of 32-bit values from a memory area on the camera.

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure. This is generally 0 for
arrays

array_offset Start offset into the array.
num_entries Number of entries to be read from the array, starting at the start offset.
*data Pointer to a location allocated by the caller, to receive the data read from the array.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_RESOURCE_NOT_ENABLED (GEV_REGISTER struct is for a register
that is not available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Write-Only
register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct does not define an array

80 • Appendix A: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

GevRegisterWriteInt

GEV_STATUS GevRegisterWriteInt(GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,
 int selector, UINT32 value);

Description

Writes an integer value to a register (an integer register access function)

Parameters

handle identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

value Value to write.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID (GEV_REGISTER struct is not for an Integer
register)
GEVLIB_ERROR_ARG_INVALID (GEV_REGISTER definition is invalid)
GEVLIB_ERROR_RESOURCE_NOT_ENABLED (GEV_REGISTER struct is for a register
that is not available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Read-Only
register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct defines an unsupported register
type)

GigE-V Framework for Linux 32/64-bit Appendix A: Feature Access Through Static Registers • 81

GevRegisterReadInt

GEV_STATUS GevRegisterReadInt(GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,
 int selector, UINT32 *value);

Description

Reads an integer value from a register (an integer register access function)

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

value Pointer to a location to receive the integer value from the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID (GEV_REGISTER struct is not for an Integer
register)
GEVLIB_ERROR_ARG_INVALID (GEV_REGISTER definition is invalid)
GEVLIB_ERROR_RESOURCE_NOT_ENABLED (GEV_REGISTER struct is for a register
that is not available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Read-Only
register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct defines an unsupported register
type)

82 • Appendix A: Feature Access Through Static Registers GigE-V Framework for Linux 32/64-bit

GevRegisterWriteFloat

GEV_STATUS GevRegisterWriteFloat(GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,
 int selector, float value);

Description

Writes a floating point value to a register (a float register access function)

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

value Value to be written to the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID (GEV_REGISTER struct is not for an Integer
register)
GEVLIB_ERROR_ARG_INVALID (GEV_REGISTER definition is invalid)
GEVLIB_ERROR_RESOURCE_NOT_ENABLED (GEV_REGISTER struct is for a register
that is not available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Read-Only
register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct defines an unsupported register
type)

GigE-V Framework for Linux 32/64-bit Appendix A: Feature Access Through Static Registers • 83

GevRegisterReadFloat

GEV_STATUS GevRegisterReadFloat(GEV_CAMERA_HANDLE handle, GEV_REGISTER *pReg,
 int selector, float *value);

Description

Reads a floating point value from a register (a float register access function).

Parameters

handle GEV_CAMERA_HANDLE identifying the camera.
*pReg Pointer to the GEV_REGISTER structure for the register to be accessed.
selector Index into a group of registers providing the same functionality. These register groups

need to be set up properly in the GEV_REGISTER structure.
This is generally 0 as the ‘array’ based functions can be used to access multiple
contiguous locations.

value Pointer to a location to receive the floating point value from the camera.

Return Value

GEV_STATUS Possible values are:
GEVLIB_OK
GEVLIB_ERROR_INVALID_HANDLE
GEVLIB_ERROR_PARAMETER_INVALID (GEV_REGISTER struct is not for an Integer
register)
GEVLIB_ERROR_ARG_INVALID (GEV_REGISTER definition is invalid)
GEVLIB_ERROR_RESOURCE_NOT_ENABLED (GEV_REGISTER struct is for a register
that is not available)
GEVLIB_ERROR_NOT_IMPLEMENTED (GEV_REGISTER struct is for a Read-Only
register)
GEVLIB_ERROR_SOFTWARE (GEV_REGISTER struct defines an unsupported register
type)

84 • Appendix B: Common Package Management methods in Linux GigE-V Framework for Linux 32/64-bit

Appendix B: Common Package
Management methods in Linux
As part of installing the GigE-V Framework for Linux, other software packages are either useful or
required for proper functioning of the API. Software packages are available for distribution in different
file formats. The most common ones are:

• “.deb” files: Debian package files
• “.rpm” files: RedHat Package Manger files
• “.tgz”: Compressed tar archive files

Different Linux distributions use different programs for managing (searching, installing, updating)
these packages. Distributions usually have both a graphical program used for installing packages as
well as a command-line program for installing packages.

Software Package Management Tools

Linux Distribution (Family) GUI-based Tool Command Line Tool
Ubuntu Ubuntu Software Center apt
Debian Synpatic (among others) apt
Suse/openSuse Yast zypper
Red Hat
(RHEL/Fedora/CentOS/Scientific)

“Add / Remove Software” menu
item
gnome-packagekit-installer
yumex

yum (for older releases)
dnf (for recent releases)

Other See distro documentation See distro documentation

The common tasks provided by package managers are :

1) Managing (Install/Remove) Packages
This is the most frequently used set of tasks performed by a package manager. The functions
include :

• Installing package from a repository
• Installing package from a file obtained elsewhere than a repository
• Updating an installed package
• Uninstalling a package.

2) Searching for Packages

The known repositories can be searched for packages by name. Descriptive information about
the packages can be displayed and the list of packages actually installed can be found.

3) Updating Package Repository Information
Each distribution has its own default list of repositories plus lists of extra repositories that can
be added (by URL) should they be required in order to locate a package. Updating the
repository information involves the following functions :

• Updating package lists with the latest information
• Listing known repositories
• Adding repositories to the known list
• Removing repositories from the known list

GigE-V Framework for Linux 32/64-bit Appendix B: Common Package Management methods in Linux • 85

CLI Package Management Command Examples (by
Distribution)
The following is a summary of the commands (and options) that can be used on some, more popular,
Linux distributions for finding and installing the packages used by the GigE-V Framework for Linux.

Task apt (.deb)

(Ubuntu/Debian
family)

yum (.rpm)
(older RedHat
family)

dnf (.rpm)
(newer RedHat
family)

zipper (.rpm)
(Suse/openSuse
family)

Update package list apt-get update yum check-
update

dnf check-update zypper refresh

install from repository apt-get install
pkgname

yum install
pkgname

dnf install
pkgname

zypper install
pkgname

update installed package apt-get install
pkgname

yum update
pkgname

dnf update
pkgname

zypper update –t
package pkgname

remove package apt-get remove
pkgname

yum erase
pkgname

dnf erase
pkgname

zypper remove
pkgname

show package info apt-cache show
pkgname

yum info
pkgname

dnf info pkgname zypper info
pkgname

list installed packages dpkg -l rpm -qa rpm -qa zypper search -is
search for package
by name :
by pattern :

apt-cache search
pkgname
apt-cache search
pattern

yum list
pkgname
yum search
pattern

dnf list pkgname
dnf search pattern

zypper search
pkgname
zypper search –t
pattern pattern

list known repos cat
/etc/apt/sources.list

yum reposlist dnf repolist zypper repos

add repository Add URL to file
/etc/apt/sources.list

Add *.repo files
to
/etc/yum.repos.d

Add *.repo files to
/etc/yum.repos.d
And/or edit
/etc/dnf/dnf.conf

zypper addrepo
URL reponame

remove repository Remove URL from
file
/etc/apt/sources.list

Remove *.repo
files from
/etc/yum.repos.d

Remove *.repo
files from
/etc/yum.repos.d
And/or edit
/etc/dnf/dnf.conf

zypper removerepo
reponame

Usually, if the command line program cannot find the desired package, the graphical program can be
used to search using regular expression patterns to find candidates and the package information /
descriptions returned can be used to determine which package to install.
Note: Different Linux distributions sometimes call the same packages by different, but similar, names.
Some attention is required in order to ensure that the proper package is found and installed.

86 • Appendix B: Common Package Management methods in Linux GigE-V Framework for Linux 32/64-bit

Required Packages
The following table contains a list of packages needed. In some cases the names are different or need
to be searched for using a pattern due to distribution-dependent naming conventions.

Purpose Distribution Package Name
S/W Development
(Compilers/Linkers etc….)

Ubuntu / Debian gcc (top level package for C
compiler)
and
g++ (top level package for C++
compilation)

 Suse/openSuse gcc
gcc-c++

 Fedora/RHEL/CentOs gcc
gcc-c++

Packet capture (for PF_PACKET
interface support)

Ubuntu/Debian libpcap0

 Suse/openSuse libpcap1
 Fedora/RHEL/CentOs Search for libcap*

Load “.glade” UI definition files at
application runtime

Ubuntu/Debian libglade2-0
libglade2-devel

 Suse/openSuse libglade-2_0-0
libglade2-devel

 Fedora/RHEL/CentOs Search for libglade2*

Compile and Link Demos using X11
for Image display

Ubuntu/Debian libx11-dev
libxext-dev

 Suse/openSuse xorg-x11-libX11-devel
xorg-x11-libXext

 Fedora/RHEL/CentOs Search for libXext*
Search for libX11-devel (may need
rpmfind for this).

Capabilities setting for
CAP_NET_RAW and
CAP_SYS_NICE support

Ubuntu / Debian libcap2 or
libcap-ng0

 Suse/openSuse libcap2 or
libcap-ng0 and
libcap-progs

 Fedora/RHEL/CentOs Search for libcap*

GigE-V Framework for Linux 32/64-bit Contact Information • 87

Contact Information

The following sections provide sales and technical support contact information.

Sales Information

Visit our web site: www.teledynedalsa.com/corp/contact/
Email: mailto:info@teledynedalsa.com

Technical Support
Submit any support question or request via our web site:

Technical support form via our web page:

Support requests for imaging product
installations

http://www.teledynedalsa.com/imaging/support Support requests for imaging applications

Camera support information

Product literature and driver updates

http://www.teledynedalsa.com/corp/contact/
mailto:info@teledynedalsa.com
http://www.teledynedalsa.com/imaging/support

	GigE-V Framework API Overview
	A Simple API for GigE Vision Cameras
	Background
	Supported Hardware Platforms
	System Requirements

	Getting Started
	Pre-requisites
	Installation
	Environment Variables
	Uninstalling

	GigE Network Adapter Overview
	IP Configuration Sequence
	Supported Network Configurations

	Firmware Update
	Example Programs
	Grab Demos
	File Access Example
	Feature Access Examples

	Performance Tuning
	GigE Vision Device Status Tool
	gevipconfig Tool
	Example usage:

	GigE-V Framework API
	API Initialization and Configuration
	Member Function Overview
	Member Function Descriptions
	GevApiInitialize
	GevApiUninitialize
	GevApiGetLibraryConfigOptions GevApiSetLibraryConfigOptions

	Automatic Camera Discovery
	Member Function Overview
	Member Function Descriptions
	GevDeviceCount
	GevGetCameraList

	Connecting to a Camera
	Member Function Overview
	Member Function Descriptions
	GevOpenCamera
	GevOpenCameraByAddress
	GevOpenCameraByName
	GevOpenCameraBySN
	GevCloseCamera
	GevGetCameraInterfaceOptions, GevSetCameraInterfaceOptions
	GevGetCameraInfo

	Camera GenICam Feature Access - Simplified
	Member Function Overview
	Member Function Descriptions
	GevInitGenICamXMLFeatures
	GevInitGenICamXMLFeatures_FromFile
	GevInitGenICamXMLFeatures_FromData
	GevGetGenICamXML_FileName
	GevGetFeatureValue
	GevSetFeatureValue
	GevGetFeatureValueAsString
	GevSetFeatureValueAsString

	Example Code (C language syntax):

	Camera GenICam Feature Access – Manual Setup
	Member Function Overview
	Member Function Descriptions
	Gev_RetrieveXMLData
	Gev_RetrieveXMLFile
	GevConnectFeatures
	GevGetFeatureNodeMap

	GenICam GenApi Feature Access through XML
	Example C++ Code: Simplified Access to GenICam Feature Node Map
	Example C++ Code: Retrieve a Pointer to the GenICam Feature Node Map and Use GenApi Directly
	Example C++ Code: Read XML as Data and Manually Instantiate a GenICam Feature Node Map for the Camera
	Example C++ Code: Store XML File and Manually Instantiate a GenICam Feature Node Map for the Camera

	Image Acquisition
	Member Function Overview
	Structure Definition: GEVBUF_HEADER
	Member Function Descriptions
	GevGetImageParameters, GevSetImageParameters
	GevInitImageTransfer
	GevInitializeImageTransfer
	GevFreeImageTransfer
	GevStartImageTransfer
	GevStopImageTransfer
	GevAbortImageTransfer
	GevGetImageBuffer
	GevGetImage
	GevWaitForNextImageBuffer
	GevWaitForNextImage
	GevGetNextImage
	GevReleaseImageBuffer
	GevReleaseImage
	GevQueryImageTransferStatus

	Asynchronous Camera Event Handling
	Member Function Overview
	Member Function Descriptions
	GEVEVENT_CBFUNCTION
	GevRegisterEventCallback
	GevRegisterApplicationEvent
	GevUnregisterEvent

	Manual Camera Detection and Configuration (Advanced Topic)
	Member Function Overview
	Structure Definition: GEV_NETWORK_INTERFACE
	Structure Definition: GEV_CAMERA_INFO
	Member Function Descriptions
	GevEnumerateNetworkInterfaces
	GevEnumerateGevDevices
	GevSetCameraList
	GevForceCameraIPAddress
	Gev_Reconnect

	Utility Functions
	GevGetPixelSizeInBytes
	GevGetPixelDepthInBits
	GevIsPixelTypeMono, GevIsPixelTypeRGB, GevIsPixelTypePacked
	GevTranslateRawPixelFormat

	Operating System Independence Wrapper
	Function Overview

	Appendix A: Feature Access Through Static Registers
	Member Function Overview
	Member Function Descriptions
	GevGetCameraRegisters
	GevSetCameraRegInfo
	GevInitCameraRegisters
	GevGetNumberOfRegisters
	GevReadRegisterByName
	GevWriteRegisterByName
	GevGetRegisterNameByIndex
	GevGetRegisterByName
	GevGetRegisterPtrByName
	GevGetRegisterByIndex
	GevGetRegisterPtrByIndex
	GevRegisterRead
	GevRegisterWrite
	GevRegisterWriteNoWait
	GevRegisterWriteArray
	GevRegisterReadArray
	GevRegisterWriteInt
	GevRegisterReadInt
	GevRegisterWriteFloat
	GevRegisterReadFloat

	Appendix B: Common Package Management methods in Linux
	Software Package Management Tools
	CLI Package Management Command Examples (by Distribution)
	Required Packages

	Contact Information
	Sales Information
	Technical Support

