
Property of DALSA. Not for publication or reproduction without permission.

Copyright © 2010 DALSA Corporation. All Rights Reserved.

continued >
1

GigE Vision Overview

The GigE Vision standard was first released in May 2006 by
the Automated Imaging Association (AIA). Within a period
of 4 years, it has become one of the dominant camera
standards in machine vision. It has exceeded Camera Link
in the number of units shipped in 2009, just behind Firewire-
based cameras (analog cameras still representing more than
50% of units shipped).

Figure 1: Evolution of percentage of cameras sold in North
America (data from AIA Market Studies)

Since its inception in 2006, the GigE Vision standard has been
through 2 revisions. Revision 1.1 was released in April 2009
and provided various improvements to facilitate integration
into real-world applications. With release 1.2 (January 2010),
GigE Vision allows non-streamable devices such as I/O boxes.
This enables whole new classes of GigE Vision devices,
beside cameras, to be controlled through the same software
interface. This eases the integration of a variety of GigE Vision
components in the machine vision system.

GigE Vision 2.0, to be released in the third quarter of 2011,
focuses on improving the speed of transfer by introducing
formal support for 10 GigE, IEEE802.1AX Link Aggregation,
IEEE1588 Precision Time Protocol, image compression (JPEG,
JPEG 2000 and H.264) and frame packing. This will offer
improved opportunities for real-time machine vision systems.

Application Note | Case Study | Technology Primer | White Paper

GigE Vision for Real-Time
Machine Vision

The acceptance and use of Gigabit
Ethernet technology for industrial
digital imaging applications
continues to grow. The increased
variety and capability of cameras
to leverage this powerful interface,
combined with planned updates
to the AIA (Automated Imaging
Association) GigE Vision® interface
standards makes GigE Vision based
imaging more robust and more ideal
than ever for real-time machine
vision applications.

Real-time imaging does not always mean ultra fast acquisition.
But it certainly means that images and results are available
when needed. Therefore, the speed at which such a system
acquires and processes data can vary significantly. But
determinism must be guaranteed to ensure reliable operation
of the real-time system.

The goal of this technical brief is to cover the most important
aspects to consider in deploying GigE Vision cameras in a
real-time machine vision system. This includes typical aspects
such as latency and jitter. Other elements such as the impact
of the operating system and PC, and various ways to optimize
your network configurations are also presented. This should
provide sufficient information to help analyze the impact of
moving from a frame grabber based system to a GigE Vision
solution when real-time operation is required from an area-
scan camera.

2

Application Note | Case Study | Technology Primer | White Paper

Real-time Imaging with GigE Vision
Real-time applications must deal with latency and jitter.
Latency is the time taken between the start and completion
of a task. Jitter is the time variation when the same task is
executed multiple times. When creating a real-time system, it
is important to define the latency and jitter requirements and
ensure the system can operate reliably and deterministically
within those specifications.

In this section, we analyze the various elements affecting
overall latency and jitter during a GigE Vision image
acquisition. Where possible, we compare GigE Vision to
Camera Link to contrast the impact of the frame grabber on
the responsiveness of the real-time system.

Trigger
In most machine vision system, a trigger is used to initiate
image capture. The trigger signal is typically synchronized to
the object to inspect. Two basic schemes exist to forward this
signal to the camera:

Hardware trigger
A hardware trigger uses a dedicated wire or electronic signal
sent directly to an input pin of the camera. The latency of
hardware trigger is normally extremely good, but some
devices support debouncing of the trigger signal to filter off
false triggers: any trigger pulses shorter than a pre-configured
value are discarded. This debouncing operation adds a small
latency to confirm the validity of the trigger pulse and can be of
the order 1 µs or more. Some jitter can be introduced by these
electronic components used to decouple the electric signal. For
instance, an opto-coupler used to isolate the incoming signal
can introduce different reaction time depending on the voltage
difference applied at its inputs and the current provided.

It is interesting to compare a GigE Vision camera to a frame
grabber for the hardware trigger situation. A Camera Link
frame grabber provides an input trigger pin offering the same
functionality as the one provided by a GigE Vision camera. But
the frame grabber has to relay that hardware trigger signal to

the camera through one of the control lines of Camera Link.
This added latency is extremely low. Therefore GigE Vision
and Camera Link solutions offer extremely fast responses
to hardware triggers. So it is much more a question of
convenience as to where it is easiest to connect the trigger
cabling than a question of performance.

Software trigger
For software trigger, the application software sends a trigger
command to the camera. This command is sent over the
camera configuration channel, which is not as responsive
as a camera input pin. In these situations, various latencies
are introduced since the software typically runs on a non-
real-time operating system (such as Microsoft Windows) and
the creation of the command requires CPU time. Sending a
software trigger is thus subject to overall availability of the
CPU to process and send the command. In a well designed
system, this can take a few hundredths of microseconds.
But if CPU is loaded, or if other I/O activities (such as display
and access to hard drive) occur simultaneously, then latency
can be greatly degraded and reach milliseconds in range,
especially if the I/O devices have poorly designed drivers. It
is important to understand that Windows kernel driver (those
that control display, I/O and the other peripherals in your PC)
can easily monopolize a CPU core as they run at a very high
priority. In general, software triggers are best avoided in real-
time systems because of this uncertainty.

Software triggering of a GigE Vision device adds to network
latency when compared to a frame grabber system. This
latency can be approximated by using half of the round-trip
time of a command/acknowledge packet pair on the network.
This round-trip time is visible using a packet sniffer, such as
WireShark (http://www.wireshark.org). For a typical GigE
Vision system, this delay ranges between 100 and 500 µs,
depending on the quality of the implementation of the host
software and camera. In a Camera Link system, the frame
grabber converts the software trigger into an electronic signal
on one of the Camera Link Control lines. Hence this network
latency is totally eliminated.

Figure 2: Example of an opto-coupled trigger pin (from DALSA Genie camera)

Property of DALSA. Not for publication or reproduction without permission.

Copyright © 2010 DALSA Corporation. All Rights Reserved.

continued >
3

Synchronization using IEEE1588
GigE Vision 2.0 supports IEEE1588 Precision Time Protocol.
IEEE1588 offers very precise synchronization of the internal clock
running on different devices connected to the network, up to
within hundredths of nanoseconds for well conceived designs.

GigE Vision devices that are IEEE1588-enabled are able to
have a “common” timestamp. This facilitates implementation
of multi-camera vision systems where images from different
cameras must be synchronized together to a very high
precision level.

GigE Vision 2.0 also extends the concept of software
trigger command by allowing them to be scheduled very
precisely in the “future” through the IEEE1588 common
clock. This minimizes jitter at the expense of a longer latency.
It also provides a simple scheme to synchronize multi-
camera acquisition through a software trigger command
that is broadcast on the network. This has the potential to
greatly simplify I/O cabling when many cameras must be
synchronized if the added latency is acceptable.

Exposure and Readout
Once the trigger signal has been processed at the camera
head, the sensor can start its exposure (accumulating light
into electrical charges). This section is not specific to GigE
Vision, but provided for completeness as exposure and
readout are significant contributors to overall latency.

Three exposure modes are typically available:

1. Camera is free-running and the trigger signal indicates to
capture the next frame. This might introduce up to one
frame of jitter.

2. Horizontal synchronous mode where the exposure must
be aligned on the line boundary timing (i.e. HSync) of the
CCD. This mode presents one line of jitter.

3. Reset mode where the sensor is reset upon trigger signal
pulse arrival. Camera stays idle until the trigger is received.
In this case, the jitter is minimal and in the order of
magnitude of one pixel.

To minimize the jitter, it is preferable to use the reset mode if it
is available on the camera.

The exposure duration is generally constant and does not
introduce jitter. But it directly contributes to the latency to get
the captured image in host memory.

Another big contributor to the latency is the sensor readout
time. The readout time is the time it takes to read the charges
accumulated in the sensor and convert them to digital
information (for digital cameras). For a 60 frames per second
camera, this readout operation takes 16.7 ms. Again, there is
no significant jitter introduced by this operation, but it is often
the largest contributor to latency in the image acquisition
chain. Readout time can be shortened by reducing the area
of interest to digitize, but this obviously reduces resolution.
Some cameras offer high frame rates, which translate into
shorter readout time.

4

Application Note | Case Study | Technology Primer | White Paper

Data Transfer
Image streaming is one aspect that directly demonstrates
the capabilities of the Ethernet, upon which GigE Vision is
based. The link speed for GigE Vision is generally 1 gigabit
per second (though you will soon start to see 10GigE-based
cameras).

When considering the data transfer time for GigE Vision,
one must take into account the overhead introduced by the
headers of the image packets. This is essentially the Ethernet,
IP (Internet Protocol), UDP (User Datagram Protocol) and
GVSP (GigE Vision Stream Protocol) headers illustrated below.
Streaming packets have typically 1500 bytes, or between
8000 to 9000 bytes for jumbo packets, where the first 36 bytes
after the Ethernet header are used by the IP, UDP and GVSP
headers. Therefore the header/footer overhead represents
about 5% of the bandwidth, not considering the data leader and
data trailer packets that delineate images sent over GVSP. As
a rule of thumb, one can use an overhead of 5% for standard
1500-byte packets and 1% for jumbo packets if image size are
640x480 (VGA) or larger as the data leader and data trailer have
negligible impact.

Figure 3: Ethernet Frame

To give an idea of the time is takes to transmit a packet, let’s
consider an 8000-byte jumbo packet. At the speed of 1 Gigabit
per second, it takes 64 µs to transmit this frame over the
network, plus 304 ns of preamble, Ethernet header, CRC and
interframe gap.

Camera side
It is important to understand that a GigE Vision camera cannot
initiate image transmission before it has sufficient data to fill at
least one packet. But what interests us the most is not when it
sends the first packet, but when it sends the last packet since
only upon reception of the latter is the image fully available for
processing. Nevertheless, ensure that the camera you select
does not wait for the full image to be read out before starting
transmission on the network as this would:

1. Create a large burst of traffic on the network, possibly
overloading the packet storage memory of the network card,
especially in multi-camera configurations;

2. Augment the latency, especially if the inter-packet delay
(discussed later) has to be increased to avoid an overflow
condition within the network.

Assuming that the camera sends packets as soon as they
are full of data and that the acquisition rate is lower than the
transmission rate, then the last packet should be fired not long
after the end of readout. This added latency is not present in a
frame grabber based system, but as we will see by experiment,
it is really small.

PC side
For GigE Vision based systems, there is no frame grabber.
It is thus the responsibility of the NIC (network interface
card) combined to a special GigE Vision driver to receive the
image packets and reconstruct the image in PC memory.
This reconstruction involves the decoding of the GVSP
packet header and the copy of the pixel data. Fortunately,
today’s PCs are very efficient and data copy is greatly
accelerated by specialized instruction set and memory
controller supporting multiple memory channels. This is an
area where there is a lot of differentiation between GigE Vision
software package vendors.

For a frame grabber, the story is quite different since the frame
grabber has an efficient DMA (direct memory access) engine
that is able to copy data directly to its final destination without
having to involve the CPU. Latency and jitter are thus kept to a
minimum, but are tied to the performance of the PCI Express
chipset of the motherboard. It is possible to have a GigE Vision
frame grabber, but this is usually not necessary at gigabit
speed and does not represent a cost effective solution. It is
cheaper to buy an efficient multi-core PC with a good network
card that is able to sustain large bandwidth.

Once the image data is fully copied into the image buffer, the
GVSP or frame grabber driver normally signals an event to
indicate to the application software that the buffer is ready for
processing. The latency of this signaling is generally quite fast
(hundred of microseconds at most), but can quickly deteriorate
into millisecond range if the CPU is heavily loaded or if other
I/O activities are taking place, as explained earlier under the
“Software Trigger” section.

Property of DALSA. Not for publication or reproduction without permission.

Copyright © 2010 DALSA Corporation. All Rights Reserved.

continued >
5

Impact of Windows
on Latency and Jitter
Microsoft Windows is the most popular operating system for PCs
these days. But it is far from being a RTOS (real-time operating
system). To optimize its responsiveness, it is necessary to be
careful with the peripherals and drivers that are installed. Different
vendors offer quite varying levels of performance in terms of CPU
usage and it sometime does not take much to derail an intended
real-time system running Windows.

DALSA has seen many systems where the worst-case reaction
time exceeds 100 ms. These systems typically contain
peripherals that have been poorly designed, many of them
polling to monitor the progress of specific operations. Constant
access to a hard drive swap file is a good example of an
element that can greatly degrade the latency and increase the
jitter. And you probably have firsthand experience with a virus
scan consuming your precious CPU processing power!

Simple measures can be taken to limit the risk of undesirable
drivers impacting our real-time systems: simply disable them
if you don’t need them! Such an example can be found by the
myriad of protocols associated to a network card (see figure
below). Each of these might need to inspect incoming packets
and thus increase the overall latency.

This is the very reason why GigE Vision software providers
offer “filter drivers” to bypass the Windows network stack.
This enables efficient processing of packets, especially for
streaming. The following figure shows how DALSA’s Sapera
LT GigE Vision software deals with GVCP (GigE Vision
Control Protocol) and GVSP (GigE Vision Stream Protocol)
of GigE Vision.

Figure 4: Example of Network Protocol that are enabled by
default on Windows

6

Application Note | Case Study | Technology Primer | White Paper

Optimizing Network Settings

Interrupt Moderation
Normally, each time a packet is received by the network card,
the associated driver will receive an interrupt. Obviously, when
packet rate is very high (that is, at high transfer rate which is
common for GigE Vision systems), this represents significant
overhead. Most network cards have introduced an interrupt
moderation mode where the card waits to have received a
certain number of packets over a maximum period of time
before issuing the interrupt. This helps reduce the burden on
the CPU as it can process multiple packets during the same
interruption.

The Intel Pro/1000 Network adapter provides a configuration
parameter to manually adjust the NIC interrupt rate. By default
the NIC driver sets this to Adaptive where the interrupt rate
automatically balances packet transmission interrupts and host
CPU performance. In most cases no manual optimization of
the Interrupt Moderation Rate parameter is required.

In some conditions, video frames from the GigE Vision camera
may be transferred to the host display or memory buffer as data
bursts instead of a smooth continuous stream. The NIC may be
over-moderating acquisition interrupts to avoid over-loading the
host CPU with interrupts. If priority is required for acquisition
transfers (i.e. a more real-time system response to the camera
transfer) then the moderation rate should be reduced by
manually adjusting the NIC parameter.

In the end, this is a compromise:

1. Enable interrupt moderation to minimize CPU usage, at the
expense of a slight increase in latency.

2. Disable interrupt moderation to favor responsiveness of
real-time system with a drawback in CPU usage.

In most situations, extra latency introduced by interrupt
moderation is very low and thus the gain on CPU performance
becomes more beneficial.

Packet Size
With good gigabit Ethernet connections with minimal packet
resend conditions, host computer performance can generally
be improved by increasing the data packet size. Each
streaming video packet(s) causes an interrupt in the host
computer. Therefore increasing the packet size reduces the
CPU usage percentage required to handle video data from the
GigE Vision camera. The argument is quite similar to the one
for interrupt moderation (reduce the number of interrupts to
copy a given amount of pixels).

A standard packet can have a size up to 1500 bytes. But
many network cards support a jumbo packet mode that can
extend that size up to 8000, 9000 bytes or even 16Kbytes.
In theory, a packet could be as large as 16 KB, but the CRC
(cycle redundancy check) containing the checksum of each
packet is not as efficient when the packet size grows larger
than 9000 bytes.

An element to consider is if the last data packet of an image
is padded by the GigE Vision camera or not. The GigE Vision
specification allows for this last packet to be shorter than the
other packet since image size is not necessarily a multiple of
the packet size. When using jumbo packets, the latency on the
shorter last packet is no worse than if regular packet was used.
In any case, we are talking about tens of microseconds, so not
a significant impact to system latency.

Property of DALSA. Not for publication or reproduction without permission.

Copyright © 2010 DALSA Corporation. All Rights Reserved.

continued >
7

Receive Buffers
Under certain conditions the host PC system CPU may be busy
with tasks other than the imaging application. Incoming image
packets remain in the PC memory allocated to store packets
instead of immediately being copied into the image buffer. By
increasing the number of NIC (network interface card) receive
buffers, more incoming image packets can be stored by the
NIC before it must start discarding them. This provides more
time for the PC to switch tasks and move image packets to the
image buffer.

Not all network boards allow increases to their receive buffer
count. Among those that do, Intel NIC, different versions will
have different maximum receive descriptor values.

In any case, with the amount of memory in today’s PC, there
is no drawback to increasing the receive buffer size to the
maximum permitted by the network card. It simply provides
more buffering capacity when needed.

Flow Control
The GigE Vision standard defines an inter-packet delay that
can be used to manage flow control (i.e. the speed at which
stream packet can be output to the network). This is useful
when connecting multiple cameras to the same port of the
network card, or when the network card/Ethernet switch (if
used) is simply too slow to process those packets. A careful
selection of equipment will ensure that the network equipment
is fast enough to handle data transmitted to the wire-speed of
1 gigabit per second. Therefore, inter-packet delay is typically
only used when multiple cameras are connected to the same
port of the network card, through an Ethernet switch.

It is important to consider that inter-packet delay inserts a
minimum delay between image packets to spread packet
transmission over a longer period of time. This can directly
impact system latency as more time than could be necessary
is put in between those packets. The best approach for real-
time imaging is to dedicate a different network port to each
camera. This way, the inter-packet delay can be eliminated in
many cases.

Some network equipments also supports the optional
IEEE802.3 PAUSE mechanism. This is a low-level handshake
to ensure the receiver of the packets is not overwhelmed
by the amount of data. It can propagate a pause signal
back to the transmitter, asking to momentarily stop the data
transmission (with a possible impact on the overall system
latency). Again, by combining network equipment that can
operate at wire-speed and allocating a different network
interface port for each camera in the system, we can ensure
these pause requests will not be used.

8

Application Note | Case Study | Technology Primer | White Paper

Experimental Evidence
As a reality check, DALSA has performed a comparison of
latency and jitter between a GigE Vision acquisition and a
Camera Link acquisition. Both systems used the same PC
with the same configuration. The only difference is the camera
and the use of a frame grabber for Camera Link. Using an
oscilloscope, we measure the time between the hardware
trigger (this starts the trace capture on the oscilloscope) and
the end-of-acquisition event that signals a thread to toggle a
pin of the PC parallel port. So this is a setup equivalent to a
real world application from the time of the trigger to the time
the image processing thread can start its access to image
data. The end-of-acquisition event generates the next hardware
trigger to generate thousands of image acquisition and provide
a significant sample size.

The GigE Vision system uses DALSA Genie HM1400
(1400 x 1024 @ 64 fps in 8-bit) running in external trigger
mode. Exposure duration is set to 100 µs and the camera is
operated in reset mode. We have used 1500-byte packets and
9014-byte jumbo packets to investigate effect of packet size.
Inter-packet delay is set to 0. The link is running at gigabit
speed. Camera is directly connected to the first port of an Intel
Pro 1000PT dual port network interface card. You can get a
single port version of this card for $70USD and a dual-port
for $200USD. In free-running mode, the transfer rate of this
camera is 93 MB/s with jumbo packets.

The Camera Link system uses DALSA Falcon 1.4M100
(which happens to have the same DALSA CMOS sensor as
the Genie HM1400, 1400 x 1024 @ 102 fps in 8-bit, 80 MHz
pixel clock) with the same settings as the GigE Vision system:
100 µs exposure duration using sensor reset mode. The
camera is connected through a DALSA Xcelera-CL PX4 PCIe

Figure 6: Camera Link System: Falcon 1.4M100 and
Xcelera-CL PX4 dual

Table 2: Datasheets of Equipment for the Experiment

DALSA Genie HM1400 www.dalsa.com/prot/mv/datasheets/genie_hm1400_xdr.pdf

Intel Pro 1000 PT dual port ww.intel.com/Assets/PDF/prodbrief/pro1000_pt_dualport_server_adapter.pdf

DALSA Falcon 1.4M100 www.dalsa.com/prot/mv/datasheets/03-070-20034-00_Falcon_HG.pdf

DALSA Xcelera-CL PX4 dual www.dalsa.com/prot/mv/datasheets/xcelera_cl_px4_dual_072408.pdf

SuperMicro X8STE motherboard www.supermicro.com/products/motherboard/Xeon3000/X58/X8STE.cfm

Intel i7-860 quad-core www.ark.intel.com/Product.aspx?id=41316f

frame grabber. This frame grabber uses a 4-lane PCI Express
interface providing 1 GBytes/sec of transfer to the PC.

The PC is based on a SuperMicro X8STE motherboard. It hosts
a quad-core Intel Core i7-860 running at 2.8 GHz. This provides
8 processing units when Hyperthreading is considered. Two
DDR3 channels clocked at 1333 MHz (3 GB of memory in total)
complete the picture. Tests are performed under Windows XP.

Figure 5: GigE Vision System: Genie HM1400 and Intel Pro 1000
PT dual port

Property of DALSA. Not for publication or reproduction without permission.

Copyright © 2010 DALSA Corporation. All Rights Reserved.

continued >
9

Network Settings of GigE Vision System
The following figure presents the network settings used for
jumbo packet transmission over the Intel Pro 1000 network
card. We increased the number of receive descriptors to the
maximum allowed and enabled jumbo packets of 9014 bytes.

Figure 7: Network Card Settings

GigE Vision with no load on CPU
This first test looks at CPU usage when no memory copy or
processing load is put on the CPU. This provides a baseline
reference for the rest of the tests. Using 1500-byte packets,
Windows Task Manager reports a 4% CPU load for data
transfer at 92 MB/s. By increasing to 9014-byte jumbo packets,
CPU usage is reduced by half to 2%.

Loading the CPU
To get meaningful worst-case results, the evaluation of latency
and jitter must be performed on a system that is running near
its capacity. To achieve that, the experiment runs two tools that
load the CPU as much as possible (next to 100%):

1. Multiple threads performing memory copy operations
2. Benchmark application performing processing

Memory-bound operations
To load the CPU memory controller, the experiment runs
multiple instances of a homemade infinite memory copy tool.
As you can see, CPU usage increases dramatically. It must be
noted that no images are lost during the GigE Vision system
acquisition since the GigE Vision acquisition driver runs in
Windows kernel at a higher priority level than the memory copy
tool. Nevertheless, loading CPU memory controller provides a
more difficult scenario to the memory controller.

Figure 9: Memory-bound Scenario

Processing-bound operations
In order to stress the CPU processing unit, we run SiSoftware
Sandra benchmarks, as shown below. This demonstrates the
relative strength of this machine compared to an Intel Core 2
quad processor of the previous generation.

Figure 10: Processing-bound Scenario

10

Application Note | Case Study | Technology Primer | White Paper

Figure 11: GigE Vision system latency
measurements (1500-byte packets)

Figure 12: GigE Vision system latency
measurements (9014-byte packets)

Figure 13: Camera Link system latency
measurements

Experimental Measurements
Having the memory copy and processing tools running on the
machine, we start the experiment with various configurations:

1. GigE Vision system with 1500-byte packets
2. GigE Vision system with 9014-byte packets
3. Camera Link system

The oscilloscope is activated by the hardware trigger signal
sent to the GigE Vision camera or Camera Link frame grabber
and it receives a pulse from the PC during the end-of-
acquisition event. This event is signaled once the full image
buffer is ready for processing. The associated callback sends
the pulse on the parallel port of the PC, which is attached to
the second channel of the oscilloscope.

The following table summarizes the jitter results obtained.
We differentiate between the typical jitter were most of the
end-of-transfer events occur, as opposed to the worst-case
jitter obtained from the most delayed end-of-transfer during
the 1 hour test. As reference, the table also lists the jitter as a
percentage of the camera readout time (15.6 ms for
GigE Vision, 10 ms for Camera Link).

The figures below show the actual oscilloscope screen shot for
each scenario. Each of them accumulated data for about
1 hour, running near the nominal speed of the camera
(1400 x 1024 @ 64 fps for the GigE Vision system, 1400 x 1024
@ 100 fps for the Camera Link system) on a fully loaded CPU
running both memory copy and processing benchmarks.

The first yellow bar at the top shows the worst-case jitter. The
second yellow bar is the typical jitter. Each square on the
display represents 500 µs. The latency from hardware trigger
to the end-of-transfer event is extremely close to “1/frame rate”
in all cases.

The dense cloud of blue dots on the left represents the
typical jitter area, where most of the end-of-transfer pulses
are registered.

 GigE Vision GigE Vision Camera Link
 (1500 bytes) (9014 bytes)

Typical jitter 0.7 ms (4.5%) 0.8 ms (5.1%) 0.6 ms (6%)

Worst-case jitter 2.4 ms (15.4%) 2.7 ms (17.3%) 1.2 ms (12%)

Table 3: Experimental Jitter Comparison (fully loaded CPU)

Property of DALSA. Not for publication or reproduction without permission.

Copyright © 2010 DALSA Corporation. All Rights Reserved.

continued >
11

Conclusions
A number of important things can be deduced from this
experiment:

1. It is true that using a frame grabber will lead to less jitter
than a GigE Vision system. The frame grabber provides
electronic circuitry dedicated to data acquisition and transfer
whereas the CPU is shared across all processes running on
Windows. The additional amount of jitter introduced by the
network connection and GigE Vision imaging driver over a
Camera Link system is no more than 1.5 ms in these tests.

2. For the GigE Vision system, the worst-case jitter experienced
is 2.7 ms with CPU fully loaded. This is less than what can
be tolerated in many real-time machine vision systems
where the data transfer time of a single image is 10 ms or
more (equivalent to a 100 fps or lower frame rate area-scan
camera).

3. For a GigE Vision system, jumbo packets slightly increase
the typical and worst-case jitter, but drastically reduce CPU
usage. Using jumbo packets is usually a good compromise.

4. The latency from trigger to end-of-acquisition is essentially
the readout time. Jitter becomes much more disruptive
to real-time performance than the added network latency,
which is essentially the last packet transmission and its
copy to the image buffer on the PC. This is true if the
network bandwidth (1 gigabit per second) exceeds the
acquisition bandwidth of the camera. Otherwise, image
data will accumulate in the camera and the latency will start
to increase. This scenario must be avoided for real-time
system whenever possible.

5. It is important to use “good” components (i.e. PC,
network card, CPU, …) to achieve these kinds of results.
These “good” components can be found off-the-shelf and
are not overly expensive. They can sustain wire-speed
(i.e. 1 gigabit per second). At the time of writing,
Intel i7 CPU family is particularly well suited to good
performances as the CPU takes on the role of the frame
grabber in moving data into the image buffers. Intel Pro
1000 network card family offers excellent performance for
the price.

In order to get good real time performance with GigE Vision,
here are a few additional recommendations:

1. In a multi-camera system, connect only one camera per
network card port if possible. This limits the contention
for network bandwidth and ensures the overall latency is
minimized and more or less constant.

2. If you need to insert an Ethernet switch between the
cameras and the network card, ensure it has enough
buffering capacity to cope with the incoming bandwidth
from the cameras. A good Ethernet switch should insert less
than 100 µs of latency and minimal jitter. And don’t use an
Ethernet Hub!

3. Ensure the camera acquisition speed is slower than the
network speed. This is to avoid accumulation of image
packets in the camera on-board memory which will directly
translate into increased latency.

The above measurements have us conclude that GigE Vision
provides a performance level suitable to many real-time
machine vision systems. This corroborates the trend in market
data that GigE Vision is outpacing the growth rate of all other
machine vision digital camera interfaces.

Americas
Boston, USA
Tel: +1 978-670-2000
sales.americas@dalsa.com

www.dalsa.com

All trademarks are registered by their respective companies. DALSA reserves the right to make changes at any time without notice. ® DALSA 2010. 011209_wp_MV_gauging

DALSA is an international leader in digital imaging and semiconductors and has its corporate offices in Waterloo, Ontario, Canada.

Europe
Munich, Germany
Tel: +49 8142-46770
sales.europe@dalsa.com

Asia Pacific
Tokyo, Japan
+81 3-5960-6353
sales.asia@dalsa.com

