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GigE Vision Overview

The GigE Vision standard was first released in May 2006 by 
the Automated Imaging Association (AIA). Within a period 
of 4 years, it has become one of the dominant camera 
standards in machine vision. It has exceeded Camera Link 
in the number of units shipped in 2009, just behind Firewire-
based cameras (analog cameras still representing more than 
50% of units shipped).

Figure 1: Evolution of percentage of cameras sold in North 
America (data from AIA Market Studies)

Since its inception in 2006, the GigE Vision standard has been 
through 2 revisions. Revision 1.1 was released in April 2009 
and provided various improvements to facilitate integration 
into real-world applications. With release 1.2 (January 2010), 
GigE Vision allows non-streamable devices such as I/O boxes. 
This enables whole new classes of GigE Vision devices, 
beside cameras, to be controlled through the same software 
interface. This eases the integration of a variety of GigE Vision 
components in the machine vision system.

GigE Vision 2.0, to be released in the third quarter of 2011, 
focuses on improving the speed of transfer by introducing 
formal support for 10 GigE, IEEE802.1AX Link Aggregation, 
IEEE1588 Precision Time Protocol, image compression (JPEG, 
JPEG 2000 and H.264) and frame packing. This will offer 
improved opportunities for real-time machine vision systems.
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GigE Vision for Real-Time 
Machine Vision

The acceptance and use of Gigabit 
Ethernet technology for industrial 
digital imaging applications 
continues to grow. The increased 
variety and capability of cameras 
to leverage this powerful interface, 
combined with planned updates 
to the AIA (Automated Imaging 
Association) GigE Vision® interface 
standards makes GigE Vision based 
imaging more robust and more ideal 
than ever for real-time machine 
vision applications.

Real-time imaging does not always mean ultra fast acquisition. 
But it certainly means that images and results are available 
when needed. Therefore, the speed at which such a system 
acquires and processes data can vary significantly. But 
determinism must be guaranteed to ensure reliable operation 
of the real-time system.

The goal of this technical brief is to cover the most important 
aspects to consider in deploying GigE Vision cameras in a 
real-time machine vision system. This includes typical aspects 
such as latency and jitter. Other elements such as the impact 
of the operating system and PC, and various ways to optimize 
your network configurations are also presented. This should 
provide sufficient information to help analyze the impact of 
moving from a frame grabber based system to a GigE Vision 
solution when real-time operation is required from an area-
scan camera.
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Real-time Imaging with GigE Vision
Real-time applications must deal with latency and jitter. 
Latency is the time taken between the start and completion 
of a task. Jitter is the time variation when the same task is 
executed multiple times. When creating a real-time system, it 
is important to define the latency and jitter requirements and 
ensure the system can operate reliably and deterministically 
within those specifications.

In this section, we analyze the various elements affecting 
overall latency and jitter during a GigE Vision image 
acquisition. Where possible, we compare GigE Vision to 
Camera Link to contrast the impact of the frame grabber on  
the responsiveness of the real-time system.

Trigger
In most machine vision system, a trigger is used to initiate 
image capture. The trigger signal is typically synchronized to 
the object to inspect. Two basic schemes exist to forward this 
signal to the camera:

Hardware trigger
A hardware trigger uses a dedicated wire or electronic signal 
sent directly to an input pin of the camera. The latency of 
hardware trigger is normally extremely good, but some 
devices support debouncing of the trigger signal to filter off 
false triggers: any trigger pulses shorter than a pre-configured 
value are discarded. This debouncing operation  adds a small 
latency to confirm the validity of the trigger pulse and can be of 
the order 1 µs or more. Some jitter can be introduced by these 
electronic components used to decouple the electric signal. For 
instance, an opto-coupler used to isolate the incoming signal 
can introduce different reaction time depending on the voltage 
difference applied at its inputs and the current provided.

It is interesting to compare a GigE Vision camera to a frame 
grabber for the hardware trigger situation. A Camera Link 
frame grabber provides an input trigger pin offering the same 
functionality as the one provided by a GigE Vision camera. But 
the frame grabber has to relay that hardware trigger signal to 

the camera through one of the control lines of Camera Link. 
This added latency is extremely low. Therefore GigE Vision 
and Camera Link solutions offer extremely fast responses 
to hardware triggers. So it is much more a question of 
convenience as to where it is easiest to connect the trigger 
cabling than a question of performance.

Software trigger
For software trigger, the application software sends a trigger 
command to the camera. This command is sent over the 
camera configuration channel, which is not as responsive 
as a camera input pin. In these situations, various latencies 
are introduced since the software typically runs on a non-
real-time operating system (such as Microsoft Windows) and 
the creation of the command requires CPU time. Sending a 
software trigger is thus subject to overall availability of the 
CPU to process and send the command. In a well designed 
system, this can take a few hundredths of microseconds. 
But if CPU is loaded, or if other I/O activities (such as display 
and access to hard drive) occur simultaneously, then latency 
can be greatly degraded and reach milliseconds in range, 
especially if the I/O devices have poorly designed drivers. It 
is important to understand that Windows kernel driver (those 
that control display, I/O and the other peripherals in your PC) 
can easily monopolize a CPU core as they run at a very high 
priority. In general, software triggers are best avoided in real-
time systems because of this uncertainty.

Software triggering of a GigE Vision device adds to network 
latency when compared to a frame grabber system. This 
latency can be approximated by using half of the round-trip 
time of a command/acknowledge packet pair on the network. 
This round-trip time is visible using a packet sniffer, such as 
WireShark (http://www.wireshark.org). For a typical GigE 
Vision system, this delay ranges between 100 and 500 µs, 
depending on the quality of the implementation of the host 
software and camera. In a Camera Link system, the frame 
grabber converts the software trigger into an electronic signal 
on one of the Camera Link Control lines. Hence this network 
latency is totally eliminated.

Figure 2: Example of an opto-coupled trigger pin (from DALSA Genie camera)
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Synchronization using IEEE1588
GigE Vision 2.0 supports IEEE1588 Precision Time Protocol. 
IEEE1588 offers very precise synchronization of the internal clock 
running on different devices connected to the network, up to 
within hundredths of nanoseconds for well conceived designs. 

GigE Vision devices that are IEEE1588-enabled are able to 
have a “common” timestamp. This facilitates implementation 
of multi-camera vision systems where images from different 
cameras must be synchronized together to a very high 
precision level.

GigE Vision 2.0 also extends the concept of software 
trigger command by allowing them to be scheduled very 
precisely in the “future” through the IEEE1588 common 
clock. This minimizes jitter at the expense of a longer latency. 
It also provides a simple scheme to synchronize multi-
camera acquisition through a software trigger command 
that is broadcast on the network. This has the potential to 
greatly simplify I/O cabling when many cameras must be 
synchronized if the added latency is acceptable.

Exposure and Readout
Once the trigger signal has been processed at the camera 
head, the sensor can start its exposure (accumulating light 
into electrical charges). This section is not specific to GigE 
Vision, but provided for completeness as exposure and 
readout are significant contributors to overall latency.

Three exposure modes are typically available:

1. Camera is free-running and the trigger signal indicates to 
capture the next frame. This might introduce up to one 
frame of jitter.

2. Horizontal synchronous mode where the exposure must 
be aligned on the line boundary timing (i.e. HSync) of the 
CCD. This mode presents one line of jitter.

3. Reset mode where the sensor is reset upon trigger signal 
pulse arrival. Camera stays idle until the trigger is received. 
In this case, the jitter is minimal and in the order of 
magnitude of one pixel.

To minimize the jitter, it is preferable to use the reset mode if it 
is available on the camera.

The exposure duration is generally constant and does not 
introduce jitter. But it directly contributes to the latency to get 
the captured image in host memory.

Another big contributor to the latency is the sensor readout 
time. The readout time is the time it takes to read the charges 
accumulated in the sensor and convert them to digital 
information (for digital cameras). For a 60 frames per second 
camera, this readout operation takes 16.7 ms. Again, there is 
no significant jitter introduced by this operation, but it is often 
the largest contributor to latency in the image acquisition 
chain. Readout time can be shortened by reducing the area 
of interest to digitize, but this obviously reduces resolution. 
Some cameras offer high frame rates, which translate into 
shorter readout time.
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Data Transfer
Image streaming is one aspect that directly demonstrates 
the capabilities of the Ethernet, upon which GigE Vision is 
based. The link speed for GigE Vision is generally 1 gigabit 
per second (though you will soon start to see 10GigE-based 
cameras). 

When considering the data transfer time for GigE Vision, 
one must take into account the overhead introduced by the 
headers of the image packets. This is essentially the Ethernet, 
IP (Internet Protocol), UDP (User Datagram Protocol) and 
GVSP (GigE Vision Stream Protocol) headers illustrated below. 
Streaming packets have typically 1500 bytes, or between 
8000 to 9000 bytes for jumbo packets, where the first 36 bytes 
after the Ethernet header are used by the IP, UDP and GVSP 
headers. Therefore the header/footer overhead represents 
about 5% of the bandwidth, not considering the data leader and 
data trailer packets that delineate images sent over GVSP. As 
a rule of thumb, one can use an overhead of 5% for standard 
1500-byte packets and 1% for jumbo packets if image size are 
640x480 (VGA) or larger as the data leader and data trailer have 
negligible impact.

Figure 3: Ethernet Frame

To give an idea of the time is takes to transmit a packet, let’s 
consider an 8000-byte jumbo packet. At the speed of 1 Gigabit 
per second, it takes 64 µs to transmit this frame over the 
network, plus 304 ns of preamble, Ethernet header, CRC and 
interframe gap.

Camera side
It is important to understand that a GigE Vision camera cannot 
initiate image transmission before it has sufficient data to fill at 
least one packet. But what interests us the most is not when it 
sends the first packet, but when it sends the last packet since 
only upon reception of the latter is the image fully available for 
processing. Nevertheless, ensure that the camera you select 
does not wait for the full image to be read out before starting 
transmission on the network as this would:

1. Create a large burst of traffic on the network, possibly 
overloading the packet storage memory of the network card, 
especially in multi-camera configurations;

2. Augment the latency, especially if the inter-packet delay 
(discussed later) has to be increased to avoid an overflow 
condition within the network.

Assuming that the camera sends packets as soon as they 
are full of data and that the acquisition rate is lower than the 
transmission rate, then the last packet should be fired not long 
after the end of readout. This added latency is not present in a 
frame grabber based system, but as we will see by experiment, 
it is really small.

PC side
For GigE Vision based systems, there is no frame grabber. 
It is thus the responsibility of the NIC (network interface 
card) combined to a special GigE Vision driver to receive the 
image packets and reconstruct the image in PC memory. 
This reconstruction involves the decoding of the GVSP 
packet header and the copy of the pixel data. Fortunately, 
today’s PCs are very efficient and data copy is greatly 
accelerated by specialized instruction set and memory 
controller supporting multiple memory channels. This is an 
area where there is a lot of differentiation between GigE Vision 
software package vendors.

For a frame grabber, the story is quite different since the frame 
grabber has an efficient DMA (direct memory access) engine 
that is able to copy data directly to its final destination without 
having to involve the CPU. Latency and jitter are thus kept to a 
minimum, but are tied to the performance of the PCI Express 
chipset of the motherboard. It is possible to have a GigE Vision 
frame grabber, but this is usually not necessary at gigabit 
speed and does not represent a cost effective solution. It is 
cheaper to buy an efficient multi-core PC with a good network 
card that is able to sustain large bandwidth.

Once the image data is fully copied into the image buffer, the 
GVSP or frame grabber driver normally signals an event to 
indicate to the application software that the buffer is ready for 
processing. The latency of this signaling is generally quite fast 
(hundred of microseconds at most), but can quickly deteriorate 
into millisecond range if the CPU is heavily loaded or if other 
I/O activities are taking place, as explained earlier under the 
“Software Trigger” section. 



Property of DALSA. Not for publication or reproduction without permission.

Copyright © 2010 DALSA Corporation. All Rights Reserved.

continued >
5

Impact of Windows  
on Latency and Jitter
Microsoft Windows is the most popular operating system for PCs 
these days. But it is far from being a RTOS (real-time operating 
system). To optimize its responsiveness, it is necessary to be 
careful with the peripherals and drivers that are installed. Different 
vendors offer quite varying levels of performance in terms of CPU 
usage and it sometime does not take much to derail an intended 
real-time system running Windows.

DALSA has seen many systems where the worst-case reaction 
time exceeds 100 ms. These systems typically contain 
peripherals that have been poorly designed, many of them 
polling to monitor the progress of specific operations. Constant 
access to a hard drive swap file is a good example of an 
element that can greatly degrade the latency and increase the 
jitter. And you probably have firsthand experience with a virus 
scan consuming your precious CPU processing power!

Simple measures can be taken to limit the risk of undesirable 
drivers impacting our real-time systems: simply disable them 
if you don’t need them! Such an example can be found by the 
myriad of protocols associated to a network card (see figure 
below). Each of these might need to inspect incoming packets 
and thus increase the overall latency.

This is the very reason why GigE Vision software providers 
offer “filter drivers” to bypass the Windows network stack. 
This enables efficient processing of packets, especially for 
streaming. The following figure shows how DALSA’s Sapera 
LT GigE Vision software deals with GVCP (GigE Vision  
Control Protocol) and GVSP (GigE Vision Stream Protocol)  
of GigE Vision.

Figure 4:  Example of Network Protocol that are enabled by 
default on Windows
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Optimizing Network Settings

Interrupt Moderation
Normally, each time a packet is received by the network card, 
the associated driver will receive an interrupt. Obviously, when 
packet rate is very high (that is, at high transfer rate which is 
common for GigE Vision systems), this represents significant 
overhead. Most network cards have introduced an interrupt 
moderation mode where the card waits to have received a 
certain number of packets over a maximum period of time 
before issuing the interrupt. This helps reduce the burden on 
the CPU as it can process multiple packets during the same 
interruption.

The Intel Pro/1000 Network adapter provides a configuration 
parameter to manually adjust the NIC interrupt rate. By default 
the NIC driver sets this to Adaptive where the interrupt rate 
automatically balances packet transmission interrupts and host 
CPU performance. In most cases no manual optimization of 
the Interrupt Moderation Rate parameter is required.

In some conditions, video frames from the GigE Vision camera 
may be transferred to the host display or memory buffer as data 
bursts instead of a smooth continuous stream. The NIC may be 
over-moderating acquisition interrupts to avoid over-loading the 
host CPU with interrupts. If priority is required for acquisition 
transfers (i.e. a more real-time system response to the camera 
transfer) then the moderation rate should be reduced by 
manually adjusting the NIC parameter.

In the end, this is a compromise:

1.  Enable interrupt moderation to minimize CPU usage, at the 
expense of a slight increase in latency.

2.  Disable interrupt moderation to favor responsiveness of 
real-time system with a drawback in CPU usage.

In most situations, extra latency introduced by interrupt 
moderation is very low and thus the gain on CPU performance 
becomes more beneficial.

Packet Size
With good gigabit Ethernet connections with minimal packet 
resend conditions, host computer performance can generally 
be improved by increasing the data packet size. Each 
streaming video packet(s) causes an interrupt in the host 
computer. Therefore increasing the packet size reduces the 
CPU usage percentage required to handle video data from the 
GigE Vision camera. The argument is quite similar to the one 
for interrupt moderation (reduce the number of interrupts to 
copy a given amount of pixels).

A standard packet can have a size up to 1500 bytes. But 
many network cards support a jumbo packet mode that can 
extend that size up to 8000, 9000 bytes or even 16Kbytes. 
In theory, a packet could be as large as 16 KB, but the CRC 
(cycle redundancy check) containing the checksum of each 
packet is not as efficient when the packet size grows larger 
than 9000 bytes.

An element to consider is if the last data packet of an image 
is padded by the GigE Vision camera or not. The GigE Vision 
specification allows for this last packet to be shorter than the 
other packet since image size is not necessarily a multiple of 
the packet size. When using jumbo packets, the latency on the 
shorter last packet is no worse than if regular packet was used. 
In any case, we are talking about tens of microseconds, so not 
a significant impact to system latency.
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Receive Buffers
Under certain conditions the host PC system CPU may be busy 
with tasks other than the imaging application. Incoming image 
packets remain in the PC memory allocated to store packets 
instead of immediately being copied into the image buffer. By 
increasing the number of NIC (network interface card) receive 
buffers, more incoming image packets can be stored by the 
NIC before it must start discarding them. This provides more 
time for the PC to switch tasks and move image packets to the 
image buffer.

Not all network boards allow increases to their receive buffer 
count. Among those that do, Intel NIC, different versions will 
have different maximum receive descriptor values.

In any case, with the amount of memory in today’s PC, there 
is no drawback to increasing the receive buffer size to the 
maximum permitted by the network card. It simply provides 
more buffering capacity when needed.

    

Flow Control
The GigE Vision standard defines an inter-packet delay that 
can be used to manage flow control (i.e. the speed at which 
stream packet can be output to the network). This is useful 
when connecting multiple cameras to the same port of the 
network card, or when the network card/Ethernet switch (if 
used) is simply too slow to process those packets. A careful 
selection of equipment will ensure that the network equipment 
is fast enough to handle data transmitted to the wire-speed of 
1 gigabit per second. Therefore, inter-packet delay is typically 
only used when multiple cameras are connected to the same 
port of the network card, through an Ethernet switch.

It is important to consider that inter-packet delay inserts a 
minimum delay between image packets to spread packet 
transmission over a longer period of time. This can directly 
impact system latency as more time than could be necessary 
is put in between those packets. The best approach for real-
time imaging is to dedicate a different network port to each 
camera. This way, the inter-packet delay can be eliminated in 
many cases.

Some network equipments also supports the optional 
IEEE802.3 PAUSE mechanism. This is a low-level handshake 
to ensure the receiver of the packets is not overwhelmed 
by the amount of data. It can propagate a pause signal 
back to the transmitter, asking to momentarily stop the data 
transmission (with a possible impact on the overall system 
latency). Again, by combining network equipment that can 
operate at wire-speed and allocating a different network 
interface port for each camera in the system, we can ensure 
these pause requests will not be used.
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Experimental Evidence
As a reality check, DALSA has performed a comparison of 
latency and jitter between a GigE Vision acquisition and a 
Camera Link acquisition. Both systems used the same PC 
with the same configuration. The only difference is the camera 
and the use of a frame grabber for Camera Link. Using an 
oscilloscope, we measure the time between the hardware 
trigger (this starts the trace capture on the oscilloscope) and 
the end-of-acquisition event that signals a thread to toggle a 
pin of the PC parallel port. So this is a setup equivalent to a 
real world application from the time of the trigger to the time 
the image processing thread can start its access to image 
data. The end-of-acquisition event generates the next hardware 
trigger to generate thousands of image acquisition and provide 
a significant sample size.

The GigE Vision system uses DALSA Genie HM1400  
(1400 x 1024 @ 64 fps in 8-bit) running in external trigger 
mode. Exposure duration is set to 100 µs and the camera is 
operated in reset mode. We have used 1500-byte packets and 
9014-byte jumbo packets to investigate effect of packet size. 
Inter-packet delay is set to 0. The link is running at gigabit 
speed. Camera is directly connected to the first port of an Intel 
Pro 1000PT dual port network interface card. You can get a 
single port version of this card for $70USD and a dual-port 
for $200USD. In free-running mode, the transfer rate of this 
camera is 93 MB/s with jumbo packets. 

The Camera Link system uses DALSA Falcon 1.4M100  
(which happens to have the same DALSA CMOS sensor as 
the Genie HM1400, 1400 x 1024 @ 102 fps in 8-bit, 80 MHz 
pixel clock) with the same settings as the GigE Vision system: 
100 µs exposure duration using sensor reset mode. The 
camera is connected through a DALSA Xcelera-CL PX4 PCIe 

Figure 6: Camera Link System: Falcon 1.4M100 and  
Xcelera-CL PX4 dual

Table 2: Datasheets of Equipment for the Experiment

DALSA Genie HM1400 www.dalsa.com/prot/mv/datasheets/genie_hm1400_xdr.pdf

Intel Pro 1000 PT dual port ww.intel.com/Assets/PDF/prodbrief/pro1000_pt_dualport_server_adapter.pdf

DALSA Falcon 1.4M100 www.dalsa.com/prot/mv/datasheets/03-070-20034-00_Falcon_HG.pdf

DALSA Xcelera-CL PX4 dual www.dalsa.com/prot/mv/datasheets/xcelera_cl_px4_dual_072408.pdf

SuperMicro X8STE motherboard www.supermicro.com/products/motherboard/Xeon3000/X58/X8STE.cfm

Intel i7-860 quad-core  www.ark.intel.com/Product.aspx?id=41316f 

frame grabber. This frame grabber uses a 4-lane PCI Express 
interface providing 1 GBytes/sec of transfer to the PC.

The PC is based on a SuperMicro X8STE motherboard. It hosts 
a quad-core Intel Core i7-860 running at 2.8 GHz. This provides 
8 processing units when Hyperthreading is considered. Two 
DDR3 channels clocked at 1333 MHz (3 GB of memory in total) 
complete the picture. Tests are performed under Windows XP.

Figure 5: GigE Vision System: Genie HM1400 and Intel Pro 1000 
PT dual port
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Network Settings of GigE Vision System
The following figure presents the network settings used for 
jumbo packet transmission over the Intel Pro 1000 network 
card. We increased the number of receive descriptors to the 
maximum allowed and enabled jumbo packets of 9014 bytes.

Figure 7: Network Card Settings

GigE Vision with no load on CPU
This first test looks at CPU usage when no memory copy or 
processing load is put on the CPU. This provides a baseline 
reference for the rest of the tests. Using 1500-byte packets, 
Windows Task Manager reports a 4% CPU load for data 
transfer at 92 MB/s. By increasing to 9014-byte jumbo packets, 
CPU usage is reduced by half to 2%. 

Loading the CPU
To get meaningful worst-case results, the evaluation of latency 
and jitter must be performed on a system that is running near 
its capacity. To achieve that, the experiment runs two tools that 
load the CPU as much as possible (next to 100%):

1. Multiple threads performing memory copy operations
2. Benchmark application performing processing

Memory-bound operations
To load the CPU memory controller, the experiment runs 
multiple instances of a homemade infinite memory copy tool. 
As you can see, CPU usage increases dramatically. It must be 
noted that no images are lost during the GigE Vision system 
acquisition since the GigE Vision acquisition driver runs in 
Windows kernel at a higher priority level than the memory copy 
tool. Nevertheless, loading CPU memory controller provides a 
more difficult scenario to the memory controller.

Figure 9: Memory-bound Scenario

Processing-bound operations
In order to stress the CPU processing unit, we run SiSoftware 
Sandra benchmarks, as shown below. This demonstrates the 
relative strength of this machine compared to an Intel Core 2 
quad processor of the previous generation.

Figure 10: Processing-bound Scenario
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Figure 11: GigE Vision system latency 
measurements (1500-byte packets)

Figure 12: GigE Vision system latency 
measurements (9014-byte packets)

Figure 13: Camera Link system latency 
measurements

Experimental Measurements
Having the memory copy and processing tools running on the 
machine, we start the experiment with various configurations:

1. GigE Vision system with 1500-byte packets
2. GigE Vision system with 9014-byte packets
3. Camera Link system

The oscilloscope is activated by the hardware trigger signal 
sent to the GigE Vision camera or Camera Link frame grabber 
and it receives a pulse from the PC during the end-of-
acquisition event. This event is signaled once the full image 
buffer is ready for processing. The associated callback sends 
the pulse on the parallel port of the PC, which is attached to 
the second channel of the oscilloscope.

The following table summarizes the jitter results obtained. 
We differentiate between the typical jitter were most of the 
end-of-transfer events occur, as opposed to the worst-case 
jitter obtained from the most delayed end-of-transfer during 
the 1 hour test. As reference, the table also lists the jitter as a 
percentage of the camera readout time (15.6 ms for  
GigE Vision, 10 ms for Camera Link).

The figures below show the actual oscilloscope screen shot for 
each scenario. Each of them accumulated data for about  
1 hour, running near the nominal speed of the camera  
(1400 x 1024 @ 64 fps for the GigE Vision system, 1400 x 1024 
@ 100 fps for the Camera Link system) on a fully loaded CPU 
running both memory copy and processing benchmarks.

The first yellow bar at the top shows the worst-case jitter. The 
second yellow bar is the typical jitter. Each square on the 
display represents 500 µs. The latency from hardware trigger 
to the end-of-transfer event is extremely close to “1/frame rate” 
in all cases.

The dense cloud of blue dots on the left represents the 
typical jitter area, where most of the end-of-transfer pulses 
are registered. 

 GigE Vision GigE Vision Camera Link 
 (1500 bytes) (9014 bytes) 

Typical jitter 0.7 ms (4.5%) 0.8 ms (5.1%) 0.6 ms (6%)

Worst-case jitter 2.4 ms (15.4%) 2.7 ms (17.3%) 1.2 ms (12%)

Table 3: Experimental Jitter Comparison (fully loaded CPU)
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Conclusions
A number of important things can be deduced from this 
experiment:

1. It is true that using a frame grabber will lead to less jitter 
than a GigE Vision system. The frame grabber provides 
electronic circuitry dedicated to data acquisition and transfer 
whereas the CPU is shared across all processes running on 
Windows. The additional amount of jitter introduced by the 
network connection and GigE Vision imaging driver over a 
Camera Link system is no more than 1.5 ms in these tests.

2. For the GigE Vision system, the worst-case jitter experienced 
is 2.7 ms with CPU fully loaded. This is less than what can 
be tolerated in many real-time machine vision systems 
where the data transfer time of a single image is 10 ms or 
more (equivalent to a 100 fps or lower frame rate area-scan 
camera).

3. For a GigE Vision system, jumbo packets slightly increase 
the typical and worst-case jitter, but drastically reduce CPU 
usage. Using jumbo packets is usually a good compromise.

4. The latency from trigger to end-of-acquisition is essentially 
the readout time. Jitter becomes much more disruptive 
to real-time performance than the added network latency, 
which is essentially the last packet transmission and its 
copy to the image buffer on the PC. This is true if the 
network bandwidth (1 gigabit per second) exceeds the 
acquisition bandwidth of the camera. Otherwise, image 
data will accumulate in the camera and the latency will start 
to increase. This scenario must be avoided for real-time 
system whenever possible.

5. It is important to use “good” components (i.e. PC, 
network card, CPU, …) to achieve these kinds of results. 
These “good” components can be found off-the-shelf and 
are not overly expensive. They can sustain wire-speed  
(i.e. 1 gigabit per second). At the time of writing, 
Intel i7 CPU family is particularly well suited to good 
performances as the CPU takes on the role of the frame 
grabber in moving data into the image buffers. Intel Pro 
1000 network card family offers excellent performance for 
the price.

In order to get good real time performance with GigE Vision, 
here are a few additional recommendations:

1. In a multi-camera system, connect only one camera per 
network card port if possible. This limits the contention 
for network bandwidth and ensures the overall latency is 
minimized and more or less constant.

2. If you need to insert an Ethernet switch between the 
cameras and the network card, ensure it has enough 
buffering capacity to cope with the incoming bandwidth 
from the cameras. A good Ethernet switch should insert less 
than 100 µs of latency and minimal jitter. And don’t use an 
Ethernet Hub!

3. Ensure the camera acquisition speed is slower than the 
network speed. This is to avoid accumulation of image 
packets in the camera on-board memory which will directly 
translate into increased latency.

The above measurements have us conclude that GigE Vision 
provides a performance level suitable to many real-time 
machine vision systems. This corroborates the trend in market 
data that GigE Vision is outpacing the growth rate of all other 
machine vision digital camera interfaces. 
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