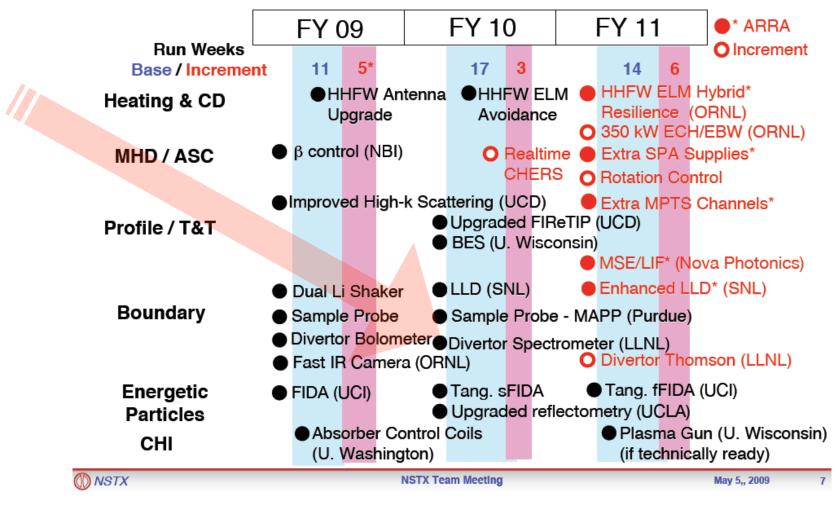


New spectrometer for SOL and divertor measurements on NSTX*

*Supported by the U.S. DOE under Contracts DE-AC52-07NA27344, DE-AC02-76CH03073

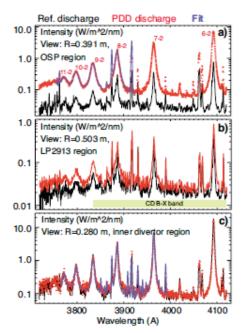

V. A. Soukhanovskii Lawrence Livermore National Laboratory

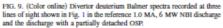
Acknowledgements: R. Bell, R. Kaita, A. L. Roquemore (PPPL)

NSTX Review, 22 May 2009, Princeton, NJ

NSTX Project has approved plans for a new divertor spectrometer for improved LLD diagnosis

NSTX Near Term Upgrade Plan ARRA Funding Significantly Enhances Research Capability


New spectrometer will address high-priority goals in NSTX Boundary Physics research


- Divertor ion source characterization
 - Atomic D, Li, C influx profile measurements in divertor
 - Molecular sources (D₂, LiD, BD, CD₄, ...)
- Divertor ion sink characterization
 - Electron-ion recombination patterns in divertor (D, He, Li)
 - High-*n* Balmer (and Paschen) series lines for n_e , T_e estimates
- Ion temperature measurements in divertor (based on Doppler broadening) for ion heat transport analysis
- Various applications
 - Divertor and edge measurements in HHFW-heated plasmas
 - Near-infrared spectroscopy for ITER
 - Possibly, SOL flow measurements and helium line ratios
 - Possibly, LTX impurity profile measurements

VIPS 2 spectrometer is used for multi-point divertor and SOL measurements

022501-8 Soukhanovskii et al.

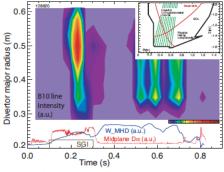


Figure 4: Spectroscopic evidence of X-point MARFE formation during SGI-U gas pulse.

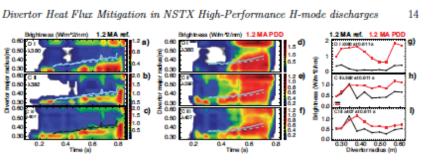


Figure 9. Time histories of divertor line brightnesses and divertor emission profiles. In the 1.2 MA reference discharge: (a) - Deuterium λ 380 nm B10 line, (b) - CII λ = 392 nm line, (c) - C III λ = 407 nm line; In the 1.2 MA PDD discharge: (d) - Deuterium λ 380 nm B10 line, (e) - CII λ = 392 nm line, (f) - C III λ = 407 nm line. Panels (g), (h), (i) - Brightness profiles of B10, C II and C III emission in the reference and PDD discharges at 0.611 s. Solid lines show time histories of the OSP major radius. Dashed lines show a projection of the X-point major radius on the divertor along the spectrometer viewing chords.

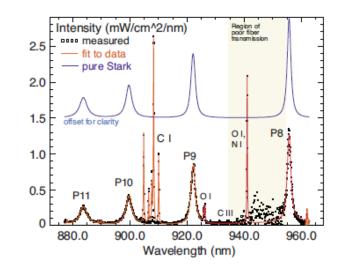


FIG. 3. (Color online) Stark broadening of P8–P11 Paschen series lines in the recombining (detached) divertor.

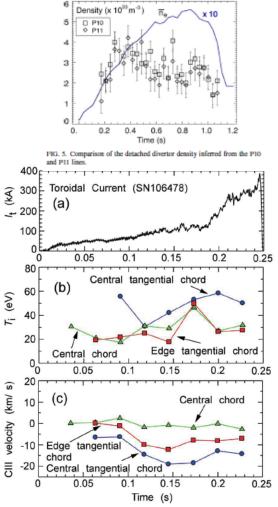
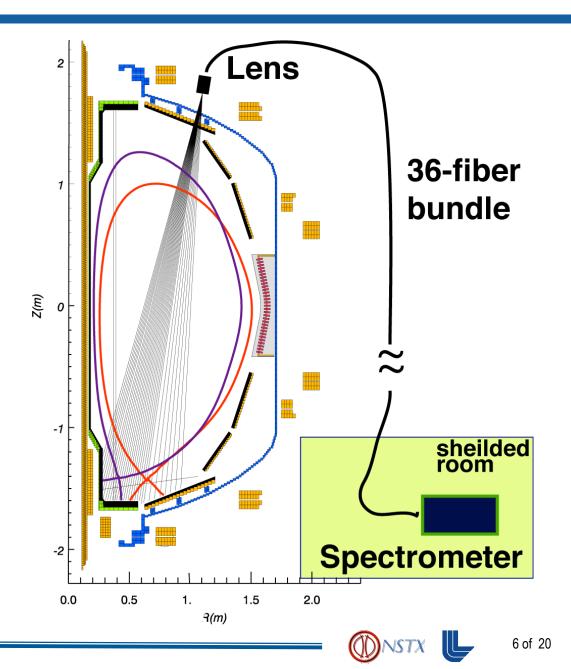
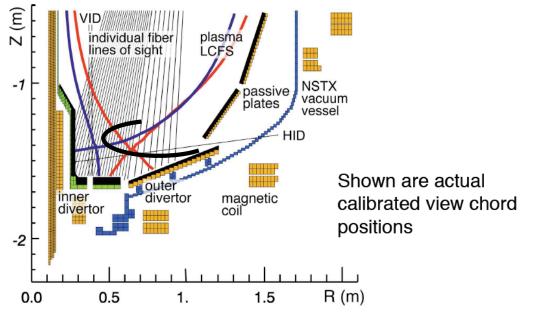


Fig. 3 Time evolution of the toroidal current I_t (a), Doppler ion temperature $T_{i,D}$ (b) and CIII ion flow velocity (c).


Conceptual requirements to new spectrometer

Diagnostic requirement	Input optics, including fibers	Spectrograph	CCD camera detector
Full divertor coverage with 1 cm resolution	Long FL imaging lens; Small diameter fibers	Stigmatic, aberration- free imaging of input slit of < 1 cm height	CCD chip height
Broadband spectral coverage 350-1200 (1900) nm	Low attenuation in range	Several gratings	Broadband sensitivity
Temporal resolution 1- 50 ms	Optimized throughput	Largest f/# for given size	Fast readout
High spectral resolution > 0.01 nm	Optimized throughput, imaging of divertor on entrance slit	Large size; 2400-3600 gr/mm gratings	Small pixel size (10-15 um)
High imaging quality	Stigmatic, aberration- free imaging	Stigmatic, aberration- free imaging	Square chip

System layout and Components


- Imaging lens
- 30 m fiber bundle
- Spectrometer input optics
- Spectrograph and gratings
- CCD detector

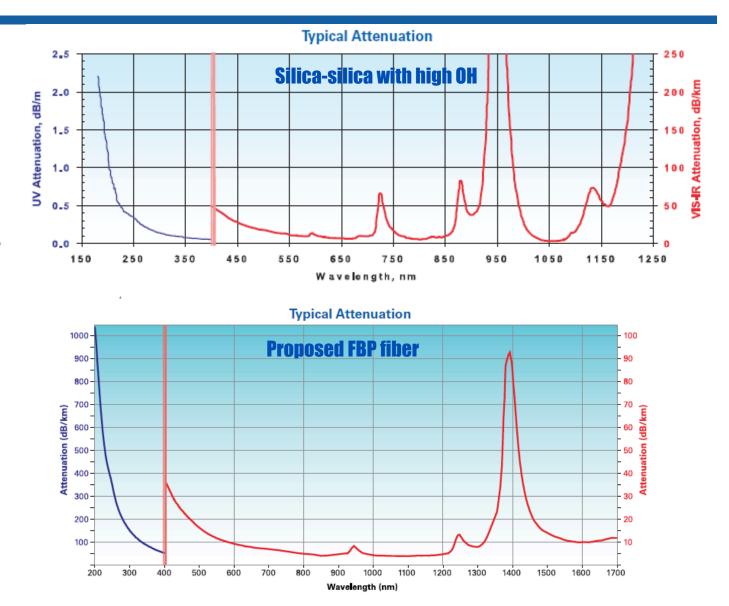
NSTX machine interface and proposed views

- Top divertor view from Bay C top port – existing window with lens and fiber bundle mount (VIPS 2)
- Tangential divertor view from Bay B horizontal divertor port (to share with camera FOB)

7 of 20

Imaging lens

- Present lens
 - Nikon model Nikkor NIK18028DAF, f=180 mm, f/# 2.8
- In initial phase, propose to use this lens
- Eventually will use lens with improved UV transmission



Fibers

- Typical choice

 silica-silica
 with high OH
- Propose new Polymicro FBP broadband fiber

NA=0.22
 (f/#=2.27)

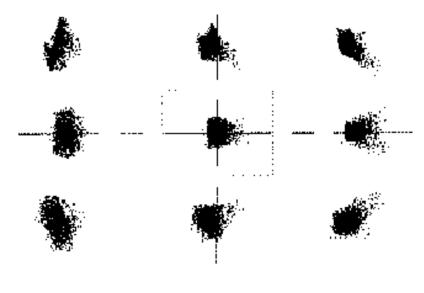
Spectrograph

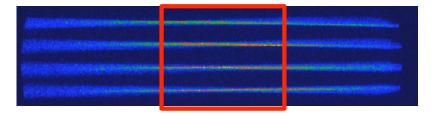
- Commercial Czerny-Turner mount to minimize development
- McPherson Czerny-Turner spectrographs have highest f/#'s for given focal length in industry (cf Acton Research Corp., HORIBA / Jobin Yvon, Chromex)
- McPherson offers cylindrical correcting mirror for high quality imaging applications
- McPherson offers a variety of large size high groove density holographic gratings

McPherson Model 207 Spectrograph

- Highest f/# 4.7 at R=0.67 m in industry
- Grating Size 120 x 140 mm
- Imaging Optics
- Automated wavelength scan
- Accuracy 0.05 nm (with 1200-g/mm grating)
- Reproducibility ±0.005 nm (with 1200-g/mm grating)
- Entrance slit height 2-20 mm, entrance slit width 5-4000 um

Grating Groove Density (g/mm)	3600	2400	1800	1200	600	300	150	75
Resolution** (nm)	0.012	0.018	0.02	0.03	0.06	0.12	0.24	0.48
Dispersion (nm/mm)	0.43	0.62	0.83	1.24	2.48	4.96	9.92	19.84
Wavelength Range	185 - 430 nm	185 - 650 nm	185 - 860 nm	185 - 1300 nm	185 - 2600 nm	185 nm 5.2 um	185 nm 10.4 um	185 nm 20.8 um
Available Grating Blazes (* Holographic gratings are available where noted.)	Holographic" 240	Holographic" 240 300	Holographic' 400 500	Holographic" 250 300 500 750 1 um	Holographic" 300 500 750 1 um 1.85 um	300 500 750 1 um 3 um 4 um	300 500 1.25 um 2.5 um 4 um 6 um 8 um	2 um 3 um 8 um 10 um 12 um

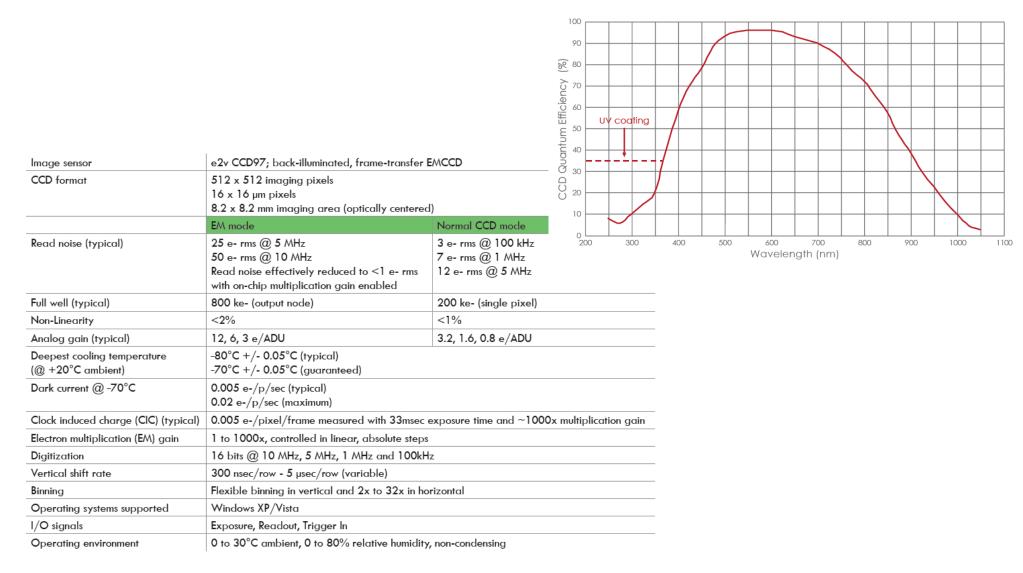

"Spectral resolution typically measured at 313.1 nm



Imaging with McPherson spectrographs

- Imaging aberrations: spherical aberration, astigmatism, coma, line curvature
- Correcting spherical aberration and astigmatism is self-exclusive
- McPherson: introduce a master cylinder correction mirror at one of the side port mirror positions
- Ray-tracing: 9 spots at ± 10 mm spatially, ± 13 mm on the dispersion axis, 100 um diameter
- Since high quality imaging region is limited, CCD detector can be square, not extended along dispersion axis

Princeton Instruments Pro EM 512 CCD camera


FEATURES

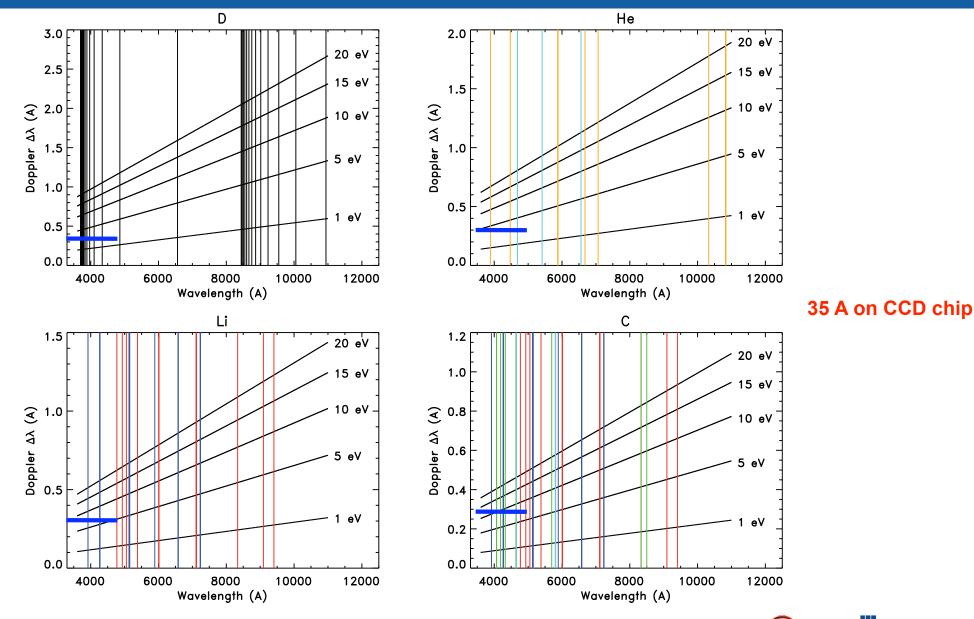
В	El	Ν	E	F	ľ	Ľ	5

Electron multiplication (EM) gain	Low-noise, impact-ionization process for single-photon sensitivity	Anter
OptiCAL TM	Linear, absolute EM gain calibration using built in precision light source EM and Non-EM modes for the lowest noise and the best linearity.	
BASE M	Baseline Active Stability Engine - stable bias for quantitative measurements	
PINS TM	Princeton Instruments Noise Suppression technology. Independently optimized EM and for the lowest noise and the best linearity.	
Back-illuminated CCD	>90% peak quantum efficiency for the highest available sensitivity	ProEM: 512B
Frame-transfer architecture	Allows 100% duty cycle imaging for tracking applications	
Deep cooling	Thermoelectric cooling below -80°C minimizes dark current and allows long exposure to Camera can be cooled with air or water, or a combination of both, and fan can be per turned off for vibration-sensitive environments	
Single optical window	Vacuum window is the only optical surface between incident light and the CCD surface No losses due to multiple optical surfaces	-
Built-in shutter	Conveniently capture dark reference frames and protect camera from dust when not in	use
Dual amplifiers	Individually optimized signal chains for a true 2-in-1 camera configuration, for high species (EM mode) or long integration (normal CCD mode) applications	eed
16-bit digitization	Wide dynamic range to capture dim and bright signals in a single image	
10- and 5-MHz readout	Video rates at full-frame resolution. Use ROI/binning for hundreds of frames per secon	d
100-kHz readout	Noise performance of a slow scan camera for precise photometry applications	
Kinetics readout mode	Powerful readout mode offers microsecond time resolution between sub-frames	
Gigabit Ethernet (GigE)	Reliable data transmission over 50m for remote operation	
Software interface	Universal interface for easy custom programming, real-time focus & image access via c	ircular buffers
C-mount (Adjustable)	Easily attaches to microscopes, standard lenses, or other optical equipment	

Princeton Instruments Pro EM 512 CCD camera

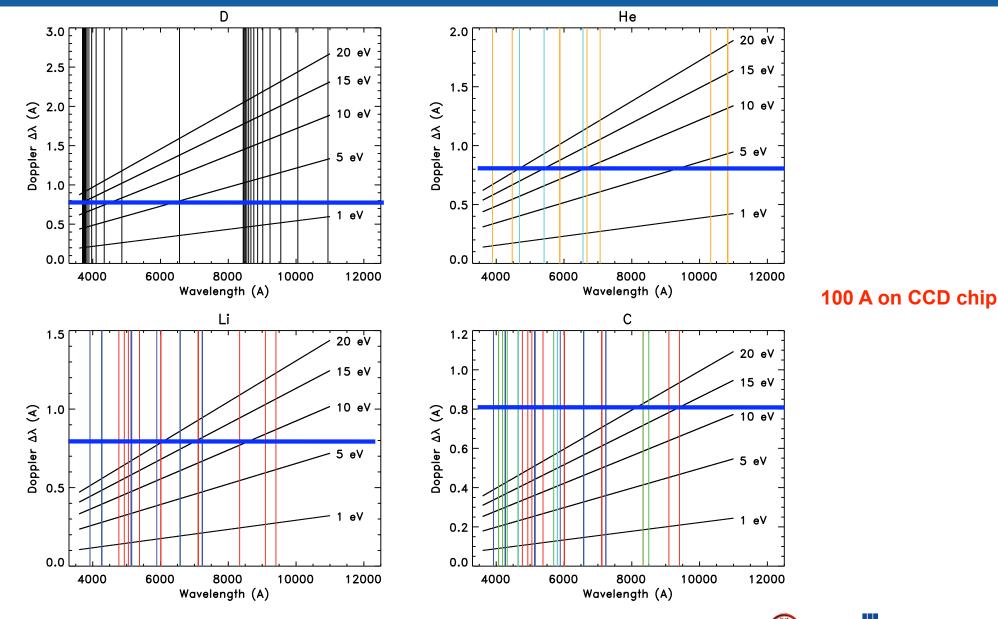
QUANTUM EFFICIENCY

Doppler spectroscopy

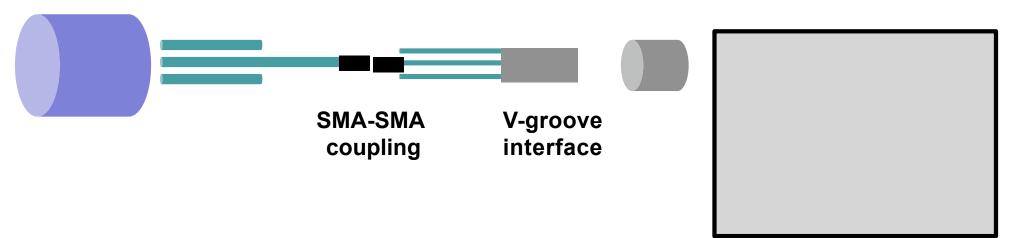

- Maxwellian distribution of atom (ion) velocities lead to a Gaussian shape of projection on line of sight
- FWHM is related to temperature

$$\Delta \lambda_D = 7.16 \times 10^{-7} \lambda \sqrt{T/\mu}$$

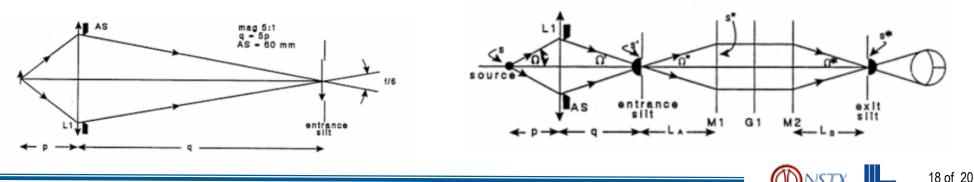
- When ions charge-exchange with neutrals (e.g. D), neutral temperature is close to ion temperature
- Large variety of D, He, Li neutral and ion lines in UV, VIS, and NIR
- Based on PI ProEM CCD, 4 pixels 16 um each, FWHM of one instrumental line takes 64 um, or 0.064 mm
- With given McPherson 207 spectrograph imaging quality and dispersion, FWHM of Doppler broadened line must exceed 0.064 mm on the detector



McPherson 207 with 3600 g/mm grating and Pro EM 512 CCD will have 0.027 nm instr. line


McPherson 207 with 1200 g/mm grating and Pro EM 512 CCD will have 0.08 nm instr. line

Conjugation of optical components


Matching F numbers:

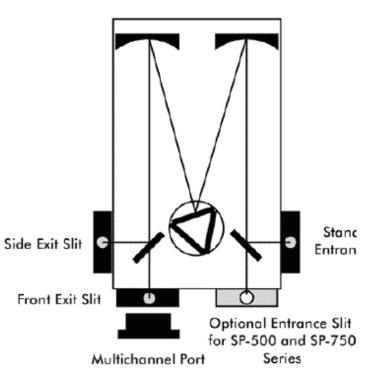
Lens: 2.8 - Fiber: 2.3 - Matching optics: from 2.8 to 4.7 - Spectrograph: 4.7

Magnifications:

Lens: 1./16.7 - Fiber: 1 - Matching optics: 1.68 - Spectrograph: 1

Summary

- Lens (\$ 4 K)
- New fibers (\$ 20 K)
- Fiber matching optics (\$ 5 K)
- McPherson spectrograph (\$ 35-45 K)
- Princeton Instruments CCD camera (\$ 38 K)
- New PC (\$ 1 K)
- Misc. small parts (\$ 2 K)
- Total M&S: \$ 105-115 K
- Minimal technical labor
 - Need technician to put fibers in core-lock
 - Need machinist to make front-end fiber holder
 - Need programmer to adopt existing software for CCD


Schedule

- June 2009
 - Order McPherson spectrograph (delivery 2-3 months)
 - Order CCD detector (delivery 4-7 weeks)
 - Finalize design of input optics and order components, including fibers (delivery 4-6 weeks)
- September December 2009
 - Mount new fiber holder at Bay C top port
 - Run fibers from NTC
 - Put together spectrometer components
 - Develop DAQ
 - System tests with full system

Reference: VIPS 2

- Acton Research SpectraPro 500i
- 0.5 m, f / 6.5 Czerny-Turner scheme
- Ten input fibers with *f*-matching optics
- Three gratings: 600, 1200, 2400 l/mm
- CCD detector 1340 x 100 pixel
 Princeton Instruments Model Spec10:100B
- CCD operated in binned mode
- Typical readout times 15-50 ms / chip
- Spectrometer and imaging system photometrically calibrated with URS-600 LabSphere radiation standard *insitu* on NSTX

Model	150 g/mm	300 g/mm	600 g/mm	1200 g/mm	1800 g/mm	2400 g/mm	3600 g/mm
SP-150	40 nm/mm	19 nm/mm	9 nm/mm	4 nm/mm	2.2 nm/mm	1.2 nm/mm	1.1 nm/mm
	1000 nm	483 nm	229 mm	100 nm	56 nm	30 sm	28 nm
SP-300i	21 nm/mm	11 nm/mm	5 nm/mm	2.3 nm/mm	1.4 nm/mm	0.85 nn/mm	0.7 nm/mm
	533 nm	279 nm	127 nm	58 nm	36 nm	22 nm	18 nm
SP-500i	13 nm/mm	6.5 nm/mm	3.2 nm/mm	1.5 nm/mm	0.9 nm/mm	0.6 nm/mm	0.45 im/inn
	330 nm	165 nm	81 nm	38 nm	23 nm	15 nm	11.5 rm
SP-750	8.8 nm/mm	4.4 nm/mm	2.2 rm/mm	1 nm/mm	0.6 nm/mm	0.4 nm/mm	0.3 nm/mm
	224 nm	112 nm	56 nm	25 nm	15.2 nm	10 sm	7.6 nm

