

Recycling and particle fluxes in NBIheated H-mode plasmas

V. A. Soukhanovskii¹

Acknowledgements: M. G. Bell², C. E. Bush², R. Kaita³, H. W. Kugel³, R. Maingi², J. Menard³, R. Raman⁴, A. L. Roquemore³

¹ Lawrence Livermore National Laboratory, Livermore, CA ² Princeton Plasma Physics Laboratory, Princeton, NJ ³ Oak Ridge National Laboratory, Oak Ridge, TN ⁴ University of Washington, Seattle, WA

NSTX Liquid Lithium Divertor Design Meetings 24 April 2007 2 May 2007 Princeton, NJ

Motivation

Based on measurements available in NSTX...

- Assess poloidal distribution of fueling sources
- Assess relative role of lower, upper divertor and "main chamber" recycling
- Provide input in liquid lithium divertor (LLD) module design
 - ✓ Input for 0D modeling
 - \checkmark Assess optimal LLD module location and size
 - ✓ Assess expected impact of LLD on particle inventory
- Apply developed analysis to FY2006 LITER lithium evaporator experiments
 - ✓ Analyze ion source change in LITER experiments
 - ✓ Assess particle balance

Large effort!

Three typical high-performance configurations are selected for analysis

Assess fueling sources in

- LSN shot 119285, 0.8 MA, 2 MW NBI, small ELMs, $\kappa \sim 2.0$, $\delta = 0.4$ "Lower κ , δ LSN"
- LSN shot 116318, 0.7 MA, 6 MW NBI, large ELMs, κ =2.2, δ =0.74 "**Higher** κ , δ LSN"
- DN shot 121238, 0.8 MA, 6 MW NBI, small ELMs, κ =2.56, δ=0.8 "**DN**"

External particle sources and sinks in NSTX

NSTX fueling source

- Gas injection: low field side (LFS, top + side) and high field side (HFS, midplane + shoulder), divertor. D₂, He, injected at S = 20 - 100 Torr I /s.
- Neutral beam injection system: three beams, 60 - 100 keV, 6-7 MW, fueling rate: S < 4 Torr I / s
- Supersonic gas injection S = 30 130 Torr I / s
- Wall (and divertor)

NSTX pumping

- Turbomolecular pump (S = 3400 I / s)
- NBI cryopump (S = 50000 I / s, in NBI-heated plasmas only)
- Conditioned walls

PFC

- ATJ graphite tiles on divertor and passive plates
- ATJ and CFC tiles on center stack

Spectroscopy, Langmuir probe and pressure gauges measurements are

S/XB ratio technique is used to infer ionization source from spectroscopic $D\alpha$, $D\beta$ measurements

$$\Gamma_{ph} = \int_{x_1}^{x_2} n_i \ n_e \ X \ B \ dx$$

- Technique originally developed by L. C. Johnson & E. Hinnov, and further by A. Kallenbach
- Used for deuterium and impurities

$$\frac{\partial n_i}{\partial t} + \frac{\partial}{\partial x}(v_i \ n_i) = S^{i-1} \ n_e \ n_{i-1} - S^i \ n_e \ n_i$$

$$\Gamma_{ph} = -\frac{X B}{S^i} \left(v_i \ n_i |_{x_1}^{x_2} - \int_{x_1}^{x_2} S^{i-1} n_{i-1} \ n_e \ dx + \int_{x_1}^{x_2} \frac{\partial n_i}{\partial t} \ dx \right)$$

$$\Gamma_i = -v_i \, n_i |_{x_1}^{x_2} + \int_{x_1}^{x_2} S^{i-1} n_{i-1} \, n_e \, dx$$

$$\Gamma_i = \frac{S}{X B} \Gamma_{ph}$$

- 1D viewing geometry
- x₁-recycling / erosion boundary, x₂ - detector location
- Recombination neglected
- Excitation and ionization occur in the same volume
- Steady-state condition

S/XB ratio technique is used to infer ionization source from spectroscopic $D\alpha$, $D\beta$ measurements

• From ADAS database (courtesy of ORNL Controlled Fusion Atomic Data Center (CFADC))

Lower divertor sources and sinks are inferred from deuterium emission profiles

- Reflections in outer divertor small (<10 %), in inner divertor higher
- Private flux region fluxes not presently considered
- Future work: use Dγ profile to infer inner divertor sink using recombinations / Dγ photon
- Outer strike point attached use S/XB ratio of 20 ionizations / $\mbox{D}\alpha$ photon
- Inner strike point detached, use S/XB ratio of 1-2 ionizations / $\mathsf{D}\alpha$ photon

Midplane center stack recycling is much higher than outer midplane edge recycling

- \bullet Outer SOL D β EIES array
 - Too few points for Abel inversion, typically all outside separatrix
 - Take innermost point and use as "radial" view
- \bullet Inner SOL D β profile from 1D CCD camera
 - Inversion difficult due to reflections / poor background coverage
 - No $T_{\rm e}$ and $n_{\rm e}$ measurements in inner SOL
 - Use values of emission in tile gaps to reduce effects due to reflections

Atomic and molecular fluxes are inferred from neutral pressure measurements

$$\Gamma_{D_2} = \frac{1}{4} n_{D_2} \bar{v} \qquad \bar{v} = \sqrt{\frac{8kT}{\pi m}} \qquad P = n \, kT$$
$$\Gamma_D = 2 \times \frac{1}{2} \times \Gamma_{D_2} = \frac{1}{4} \frac{P}{kT} \sqrt{\frac{8kT}{\pi m}}$$

- "Standard" way to estimate molecular / atomic fluxes from neutral pressure measurements
- Might be about factor of 2-3 overestimated (comes from comparisons to MC simulations and / or kinetic simulations)
- Typical midplane pressure P < 0.1 mTorr, lower divertor P < 1 mTorr
- Inferred midplane Γ_d in agreement within factor of 1 -5 with Γ_i from midplane Dß measurements

Plasma ion out-flux is inferred from tile Langmuir probes

• I_{sat} data available for nearly all 2005 - 2007 shots

$$j_{sat} = \frac{I_{sat}}{A_{pr}\sin\alpha} \qquad \Gamma_i = j_{sat}/e$$

- Tile Langmuir probes are flush-mounted
- Main computational effort is to calculate α 's accurately
- For very shallow angles ($\alpha < 1-2^{\circ}$) will use Gunn's probe sheath expansion model. At present uncorrected j_{sat} are used
- Inferred fluxes will be used to assess main wall flux according to the "window frame" technique

"Window frame" technique will be used for main chamber particle flux estimate

Poloidal distribution of particle flux measurements, shot 119285 (low κ , δ)

- Main "wall" particle flux similar at upper divertor, outer midplane
- Langmuir probe uncorrected j_{sat} shown
- Need to reconcile LP flux measurements with other diagnostics

Particle sources, shot 119285 (low $\kappa,\,\delta$) at 0.3 s and at 0.5 s

- Main particle source is (outer) divertor
- As inner divertor is detached (high n_e , low T_e) fueling efficiency is low
- Total particle inventory is 3.17e20 and 5.08e20

-ONSTX-

Poloidal distribution of particle flux measurements, shot 116318 (high κ , δ)

- Main "wall" particle flux high at lower and upper divertors
- Langmuir probe uncorrected j_{sat} shown
- Need to reconcile LP flux measurements with other diagnostics

Particle sources, shot 116318 (high $\kappa, \, \delta$) at 0.275 s, 0.600 s and at 0.750 s

- Main particle source is still (outer) divertor
- Small inner divertor volume leads to reduced inner div. source strength
- Total particle inventory is 4.1e20, 5.63e20, and 6.1e20

In both configurations divertor appears to be largest particle source

Conclusions

- In both LSN configurations
 - ✓ Lower divertor appears to be dominant ionization source (x 5-10) over "main wall" source
 - ✓ Upper X-point may induce substantial plasma-wall interaction and particle fluxes
- Implications for LLD design
 - ✓ LLD should be where **outer divertor SOL** intersects the divertor plate
 - ✓ LLD tray width should be approx. drsep x flux expansion at OSP
 - In lower κ,δ LSN configuration, OSP control is an issue OSP drift due to control by PF2L only
 - ✓ In lower κ , δ LSN configuration, LLD area as largest
 - ✓ In lower κ,δ LSN configuration, LLD placement at OSP is least interfering with plasma operations

Given technical complexity of LLD, suggest initial LLD placement outboard of CHI gap ("outer divertor plate")

