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Motivation and Technique

• Desire predictive models for effect of pumping on NSTX
edge plasma
– Provide means for comparing density control schemes, e.g. different

Lithium tray design parameters (or even in-vessel cryopumping)
– Should be compared with other experiments and more details

calculations

• Consider simple recycling model to evaluate examples of
each scheme
– DIII-D data from first cryopump in 1993
– CDX-U data from liquid Lithium

• Goal: Predict range of reduction in edge density in H-mode
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• 0-D calculations presented in this talk:

– Parameterized as ratio of pump to core fueling probabilities

– Requires an assumed relation between pump probability and
lithium surface area

• 1-D calculations
– Onion-skin OEDGE type, requires assessment for NSTX

• 2-D fluid calculations (model)
– T. Rognlien did NSTX calculations in the past for ALPS/APEX

• 2-D fluid + lithium transport calculations  (model)
– T. Rognlien/J. Brooks did NSTX calcs in the past for ALPS/APEX

• 2-D fluid plasma (data-constrained base case)
– G. Porter, L. Owen, and R. Maingi have done these for DIII-D

• 2-D fluid plasma + kinetic neutrals (data-constrained base case)
– L. Owen, M. Rensink, and R. Maingi have done these for DIII-D

Pumping calculations will help specify the LLD design
parameters
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• The following LLD design parameters need to be
specified (target: April 15, 2007):
1) Tray Width

2) Tray Major Radius Rtray

3) Number of tray segments, gap size(s) between segments,
and  clocking of segments  (φmin−φmax)

• Minimum density will depend on tray-OSP distance

Calculations needed for LLD Tray Design Specification

Optimized pumping

Un-optimized pumpingLarge distance between
OSP and LLD radius
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Discharges #116318 @ 0.6 sec  and #121238 @ 0.3 sec
used for design calculations

121238@300ms
121241@300ms

κ=2.6, δL=0.7-0.8
δRSEP = -5mm

LRDFIT04

Existing #116313
κ= 2.3, δX-L = 0.75

 δRSEP = -1cm

New target shape
κ= 2.6, δX-L = 0.85

 δRSEP = -2mm
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Particle Balance and Recycling Model

• Consider core and SOL
particle content equations

• Assume SOL neutral and
ion density in steady state
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Simplified Particle Balance and Recycling Model

• Define τp* = τp/(1-β)
– Steady state: τp* =N/(SNBI+Sgas)

• Normal assumptions:
–  ηNBI ~ 1
– Rp(ηpump + ηcore)>>(1-Rp)
–  ηpump, ηcore independent of time

• Particle balance equation becomes:

• Has been used to model step change
in τp (L-H) and pumping (ηpump>0)

RpΓ⊥
i

Γ⊥
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dN
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N
τ p

*

Let S = SNBI + (1+β(1−ηgas))ηgasSgas
Solution :
N(t) = Sτp

*,1+S(τ p
*,2 −τp

*,1)exp−(t /τ p
*,2)
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Simplified Particle Balance and Recycling Model

• Density reduction factor

ne
red = τp,pump* / τp,nopump*

= (1-β)noLi /(1-β)Li  {constant τp}

•  βnoLi= ηcoreRp/((1-Rp)+ Rp*ηcore)

•  βLi= ηcoreRp/((1-Rp)+ Rp*(ηcore+ηpump)

• Need prescription to estimate ηLi

• Is ηcore really independent of ne?

• Is τp really independent of ne?
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i

Γ⊥
i

(1−Rp)Γ⊥
i

ηpumpRpΓ⊥
i

ηcoreRpΓ⊥
i

N /τ p

ηNBISNBI

ηgasSgas

(1−ηNBI )SNBI
(1−ηgas)Sgas



9

Limits of Particle Balance and Recycling Model

• Note τp*/τp = 1/(1-β)
• Pump off: τp*/τp ~ 1+ ηcoreRp/(1-Rp)

–  τp*/τp ~ 6

• Pump on: τp*/τp ~ (ηcore+ηpump)/ηpump
–  τp*/τp ~ 2

 ne should go down by 2/3 w/pumping
⇒Smaller ne reduction observed,

maybe due to increased core fueling
probability at low ne

• Input data (from DIII-D studies):
– Rp ~ 0.98 for carbon (reference?)
–  ηcore ~ 0.1 (Rensink, PoF B 1993)
–  ηpump ~ 0.1 (Maingi, NF 1999)
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Method to Relate 0-D Pump Probability to Divertor
Plasma and Lithium tray parameters

Impact of Rtray, Δtray, (ROSP- Rtray)
(Γ available from Vlad)

€ 

ηpump ≅ γLi
sticking

Γ⊥ (R)RdR
Rmin,tray

Rmax,tray

∫

Γ⊥ (R)RdR
Rmin

Rmax

∫
Γout

Γin + Γout

 

 
 

 

 
 

Γdown
Γup + Γdown

 

 
  

 

 
  fφ

In/out particle flux ratio - 0.8

Up/down particle flux ratio
0.5 (δr

sep important)

Tray toroidal coverage - 0.9
Li surface particle sticking
probability - 0.85

*Red items to be estimated from Vlad’s CCD camera data
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Procedure

• Convert Dα to particle flux with magic number of 20
ionizations per photon

• Estimate LLD flux intercept fraction from data for a given
Rtray, Wtray, etc. for a given time slice
– Vary Rtray 1 cm at a time

• Rtray starting point a few cm inside of the outer strike
point; avoids interpretation of partially detached inner
region

• Avoid covering CHI gap with tray
– Iterate on ηcore ~ 1/ne

α (default: α=2)
• Repeat for different Wtray, Rp, and other input parameters
• Repeat calculations for different shots with different poloidal

flux expansion
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Broad SOL Dα profile in high δ (pf1a) #121238

κ=2.6, δL=0.7-0.8
δRSEP = -5mm

LRDFIT04

#121238 @ 0.3 sec 
Outer strike point

Soukhanovskii
121238@300ms
121241@300ms
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Achievable edge density reduction depends on tray
radius and width

width=

Rp=0.98, ηcore
init~0.1, ηcore~ ne

−2 

#121238 @ 0.3 sec 
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Achievable edge density reduction is reduced if core
fueling efficiency ηcore~ ne

α

α=

#121238 @ 0.3 sec 

Rp=0.98, ηcore
init~0.1, Wtray=0.1 m 
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Achievable edge density reduction decreases with
assumed initial wall recycling coefficient, Rp

Rp=

#121238 @ 0.3 sec 

ηcore
init~0.1, ηcore~ ne

−2, Wtray=0.1 m 
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Achievable edge density reduction nearly independent
of initial core fueling probability, ηcore

ηcore=

#121238 @ 0.3 sec 

Rp=0.98, ηcore~ ne
−2, Wtray=0.1 m 
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Narrow SOL Dα profile in medium δ (pf1b) #116318

#116318 @ 0.6 sec
(no data on #116313)

Outer strike point

Existing #116313
κ= 2.3, δX-L = 0.75

 δRSEP = -1cm

Soukhanovskii
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Achievable edge density reduction depends on tray
radius and width

width=

#116318 @ 0.6 sec 

Rp=0.98, ηcore
init~0.1, ηcore~ ne

−2 
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Narrow SOL Dα profile in low δ (pf2) #119285

Outer strike point

Soukhanovskii
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Achievable edge density reduction depends on tray
radius and width

width=

#119285 @ 0.5 sec 

Rp=0.98, ηcore
init~0.1, ηcore~ ne

−2 
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Discussion and Conclusions

• 20cm wide tray just outboard of the CHI gap likely to
provide sufficient density reduction as required for long pulse
high non-inductive fraction reported at the Dec. 2006
research forum

• To get a full 50% density reduction will probably require a
tray near the outer strike point
– Inboard of CHI gap for high δ discharges
– Outboard of CHI gap for low δ discharges

• Actual density reduction factor depend strongly on how
quickly core fueling efficiency increases with decreasing
density, and the pre-Li global wall recycling coefficient

• Intend to compare with UEDGE calculations, when available
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Backup
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NSTX Dα Peaked on Inboard Side, but Particle Flux Peaked on Outboard
side because Inner Divertor is Usually Partially Detached

#108724

total

outerinner

inner div.
detached

outer div.
attached

• Inner side
detached

• Outer side
attached

• Ions/photon
=1 (detach)

• Ions/photon
=20 (attach)

• Division at
R ~ 0.6m

• Out div. has
~ 4x times
current of
inner div.
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Comparison of Unpumped and Pumped DIII-D Discharges

• Edge electron pressure holds
constant as ne reduced

• Relative change in edge ne
larger than core

core edge
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Particle Balance and Recycling Model - DIII-D cryopump

• DIII-D specific data:
– Rp ~ 0.98 for carbon (reference?)
– Rp changes slowly (Maingi, NF 1996)
–  ηcore ~ 0.05-0.15 (Rensink, PoF B 1993)
–  ηpump ~ 0.1 (Maingi, NF 1999)
–  ηgas ~ 0.1 (Maingi, JNM 1997)
–  τp/ τE = 2.5 (~ Owen, JNM 1997)

• Solid ηcore  - fixed in time
– Ne goes down on τp

* timescale

• Dashed ηcore ~ 1/ne
2

–  τp
* increases with time

– Ne equilibrates faster than initial τp
*

#77180: ne (TS)@ 0.8 m

ηcore fixed

ηcore ~ 1/ne
2


