

Measurements of recycling on liquid lithium divertor module in NSTX*

*Supported by the U.S. DOE under Contracts DE-AC52-07NA27344, DE-AC02-76CH03073

V. A. Soukhanovskii Lawrence Livermore National Laboratory

Acknowledgements: R. Kaita, H. W. Kugel, A. L. Roquemore (PPPL), K. Tritz (JHU)

NSTX Review, 13 February 2009, Princeton, NJ

Recycling measurements will be important for LLD performance characterization

- Need to measure local recycling from LLD
- Define recycling as $R_{local} = \Gamma_i^{out} / \Gamma_i^{in}$
 - Ion flux into LLD Γⁱⁿ_i is measured by Langmuir Probes (combined PPPL / UIUC effort)
 - Ion outflux Γ_i^{out} into SOL plasma can be estimated from measured D flux and S/XB (ionizations/photon) coefficient from ADAS
 - Need absolutely calibrated D photon flux
 - Need molecular emission measurements to include contributions from molecules (outside of this talk)
- Recycling measurements are useful for UEDGE / Degas 2 modeling
 - calculation constraints
 - infer a global picture of LLD performance (pumping, etc)

Existing divertor Balmer line measurements will be difficult to interpret due to reflections from LLD

FIG. 1. Normal incidence reflectance data of lithium.

- Figure from M. Rosigni et al., JOSA 67, 54 (1977)
- Shows that reflections for the Balmer lines (α, β, γ) in the visible range are much higher than for the Lyman line λ=121.6 nm (Ly_α) in the far UV range

🕅 NSTX 🖳

V. A. Soukhanovskii, Design of Ly-a arrays for recycling measurements on NSTX Liquid lithium divertor module, 02/2009

Ly_{α} diagnostic requirements

- Absolute calibration need to convert the number of photons to ionizations
- Spatial coverage lower divertor, with several chords on LLD
- Time response need 1 kHz for steady-state, > 10 kHz for ELM-resolved measurements
- Data serving on a shot-to-shot basis
- Flexibility with spectral coverage desirable e.g., Ly_α, bolometry, Li II, C IV

Lyman- α diagnostic: wavelength selection elements and detectors

- Wavelength selection in far UV
 - Dispersive elements (e.g., diffraction gratings, prisms)
 - Narrow bandpass filters
- Photon-efficient far UV detectors
 - Micro-channel plates + scintillators + CCD cameras
 - FUV scintillators + visible detectors (cameras, PMTs)
 - Photo-diodes

Main requirement: need for absolute calibration => Only option: filter + AXUV diode

Positive first experience with Ly_{α} measurements obtained in NSTX in 2006

LADA diagnostic on NSTX monitored recycling from lower inner wall and inner divertor regions

- Installed on Bay J midplane port in mid-May 2006
- Operated for about one month
- Used ten CAMAC differential amplifiers provided by CDX-U
- Used ten channel PC-based DAQ system provided by JHU
- Channel 1 was <u>vignetted</u> by in-vessel hardware
- Otherwise collected good data (examples on next page)

Positive first experience with $\text{Ly}_{\alpha}~$ measurements obtained in NSTX in 2006

 Ly_{α} filter mode

7 of 20

 Ly_{α} filter mode

Conceptual layout of pin-hole Ly- α camera

V. A. Soukhanovskii, Design of Ly-a arrays for recycling measurements on NSTX Liquid lithium divertor module, 02/2009

Narrow-bandpass multilayer FUV filter from ARC

- Open-faced multilayer transmission filter mounted on MgF₂ substrate
- Bandpass is narrow enough to transmit only Ly_{α} light
- Practically no impurity (Li, C, O) emission lines within bandpass (e.g. Boivin et. al. RSI 72 (2001) 961

FIG. 3. Measured plasma emission in the UV region using a McPherson (VUV) spectrometer. Overlaid is the measured filter response.

AXUV diode arrays from IRD

Propose to buy two AXUV arrays:

- AXUV20EL (workhorse)
- AXUV16EL (backup)

	Sensitive		Shunt	Capacitance	Risetime	
Model no.	Area	Size	Resistance	@ 0V	(10-90%)	Package/
	(mm ²)	(mm)	(MΩ)**	(pF)**	(nSec)**	Page no.
AXUV3ELA#	1 (X3)	1 X 1 (X3)	1000	40	1	C3EL/21
AXUV10EL#	1 (X10)	1 X 1 (X10)	1000	40	1	C10EL/21
AXUV16ELO/G	10 (X16)	2 X 5 (X16)	100	2000	500	C16ELO/21
AXUV16EL	10 (X16)	2 X 5 (X16)	100	2000	500	C16EL/22
AXUV20EL	3 (X20)	0.75 X 4 (X20)	300	1000	200	C20EL/22
AXUV22EL	4 (X22)	1.0 X 4.0 (X20)	200	1000	200	C22EL/22

AXUV-20EL and AXUV16EL arrays

UHV-compatible pre-amplifier

- Clear-Pulse Inc. (Japan)
- Model 8986A Pre-amplifier
 - 20 ch
 - All UHV components
 - Teflon or ceramic sockets
 - 40 cm Kapton cable
 - Gain: 10^6
 - 10 kHz time response

Cables, connectors, feedthroughs

- 50 pin 2-3/4" flange feedthrough
 - UHV compatable materials
 - 250°C bakeout temperature
 - Kapton® insulated wire
- **UHV-compatible connectors**

Data acquisition: MDS Plus ready D-TACQ module

- Module ACQ196CPCI-96-250
 - 96 channels
 - 250 kSPS Simultaneous Digitizer
 - 16 bit ADC per channel for true simultaneous analog input
 - True differential input to each channel
 - Plant cable interface to front panel - 3 x SCSI 68 connectors on front panel
 - Standalone networked mode
 - External clock, trigger, internal clock
 - Direct TCP/IP connection to network / to MDS server

ACO104CDCI

V. A. Soukhanovskii, Design of Ly-a arrays for recycling measurements on NSTX Liquid lithium divertor module, 02/2009

Plan for installation and operation on NSTX

Phase 1 - initial FY 2009 operation

- Install at Bay G top port with TIV
- No cooling required
- Goal is to test the design and all aspects of operation before LLD installation
- Rack for DAQ module identified
- Install by late summer 2009
- Geometry calculations
 - Lower divertor spatial coverage requirement – 0.80 m, spread angle – 13.8°
 - Magnification: ~ 33, Pinhole-AXUV array distance – 0.10 m
 - For 2 mm spacing between diode elements,
 33 X 2 mm = 66 mm spacing on divertor

Plan for installation and operation on NSTX

Phase 2 – LLD operation

- In-vessel installation at candidate port
 - on the wall in pump duct, or
 - on flange at Bay G midplane
- Cables will be taken out through 2-3/4" flange
- Will need in-vessel air or water cooling package temperature not to exceed 70° C during bakeout and operation
- Remotely controlled filter and aperture slider

Signal estimates

- Input parameters
 - AXUV diode efficiency at Ly_α wavelength 0.11 A W⁻¹
 - Ly_{α} filter transmission 0.06 (or 6%)
 - Pre-amp gain 10⁶ V A⁻¹
 - Diode area 3x10⁻⁶ m⁻² (AXUV-20EL) or 10⁻⁵ m⁻² (AXUV-16EL)
 - Etendue 3x10⁻⁴ x A₀ sr m² or 10⁻³ x A₀ sr m²
 - Ly_{α} brightness 10³-10⁵ W m⁻² sr⁻²
 - Variable parameters: pinhole aperture e.g., A₀=10 mm²
- Signals lower bound ~ 0.02 V, upper bound 5 V

Cost estimates

M&S – total about 20 K with DAQ

- AXUV diode array from IRD, Inc. \$ 1.25-1.6 K
- Ly_{α} Filter from ARC \$ 1 K
- Pre-amplifier from Clear-Pulse, Inc. \$ 5 K
- Vacuum feedthrough from ISI \$ 1 K
- Cables \$...
- Data acquisition module from D-TACQ \$ 10,600.00

Labor

- Need to design and make housing and holder for Phase 1
- Need technician to make cables and connections
- Computer system integration
- Need to design housing and cooling for Phase 2

Future directions

- More arrays with better spatial coverage
- Routine operation in Recycling / Radiated power / Li modes
- Can measure C IV 155.0 line with bandpass filter from ARC (similar to Ly_{α} filter)
- Can measure Li II 19.9 nm line with multilayer foil filter (e.g., Al/Nb/C with bandpass 17-21 nm) or a multilayer mirror

Appendix – previous presentations

- Presentation on Ly_α array for NSTX LLD measurements
 LLD diagnostics FDR 07/2008
- Presentation to CDX-U / LTX group on Ly_{α} measurements 08/2006

Lyman- α arrays to be used for recycling rate measurements from highly reflective LLD

Mirror-like lithium surface will complicate interpretation of visible (400-750 nm) spectroscopic diagnostics

AXUV diode arrays with bandpass filters measure Ly- α *n*=1-2 H/D transition at 121.6 nm, where reflections are negligible

16-20 channel diagnostic can be assembled from off the shelf components for 10 K, plus 10-15 K for DAQ system

One array will be fielded in FY09 at Bay G upper divertor port

Recycling measurements using hydrogen (deuterium) Lyman Alpha line and AXUV diodes

V. A. Soukhanovskii

Lawrence Livermore National Laboratory, Livermore, CA

Acknowledgements: R. Kaita^a, A. L. Roquemore^a, K. Tritz^b

^aPrinceton Plasma Physics Laboratory, Princeton, NJ ^bThe Johns Hopkins University, Baltimore, MD

> LTX Meeting Princeton, NJ 15 August 2006

Recycling measurements background

- Recycling is the dominant (*) source of fueling in present day plasma fusion devices (* with some exceptions)
- Recycling is usually measured spectroscopically using atomic H (D) line emission
- Simple measurements can be done with
 - spectrometers
 - detectors with narrow bandpass interference filters
- Since recycling is localized to the surface plasma layer, line integrated measurements are usually not contaminated by main plasma emission
- However, if the surface is reflecting, measurements are hard to interpret

V. A. Soukhanovskii, LTX Meeting, 15 August 2006, Princeton, NJ

Spectroscopic background

- Balmer alpha line $H_{\alpha}(D_{\alpha})$ (3-2) is most commonly used
 - λ =656.3 nm (656.1 nm) it's in the visible range
 - ...where many optical detectors (CCDs, PMTs, silicon diodes, APDs, ...) have high efficiency
 - However, PFC surface reflections are a problem (very high!)
- Balmer beta line $H_{\beta}(D_{\beta})$ (4-2) is a good choice
 - λ =486.1 nm (486.0 nm) it's also in the visible range
 - ...where many optical detectors have *fairly high* efficiency
 - but: about x10 less intensity than $H_{\alpha}(D_{\alpha})$ intensity
 - and PFC reflections are still (but less of) a problem
- Higher level transitions (5-2, 4-3) are weak but can be considered
- Lyman alpha line Ly_{α} (2–1) is also a good choice
 - λ =121.6 nm in the Vacuum Ultraviolet (VUV) wavelength region
 - very bright resonant transition!
 - but: need special VUV detectors , filters and windows
 - normal reflections are weak from common PFC materials (graphite, CFC, blackened SS, etc)

V. A. Soukhanovskii, LTX Meeting, 15 August 2006, Princeton, NJ

AXUV diode array diagnostic on CDX-U

- AXUV diode is an *absolute* radiometric reference if properly used. Manufactured by International Radiation Detectors http://www.ird-inc.com/
- AXUV arrays developed by JHU Plasma Spectroscopy Group in collaboration with PPPL for CDX-U and NSTX spherical tori
 - CDX-U: RSI 72 (2001) 737; PPCF 44 (2002) 2339; RSI 72 (2001) 915
 - NSTX: RSI 70 (1999) 572
- AXUV radiometer array operated on CDX-U from 1999 to 2006
 - Used for radiated power measurements
 - Used for plasma position and equilibrium estimates
 - Used for midplane impurity profile measurements in 1999-2000 with NSTX amplifiers and Ti / Be filters
- Many other plasma devices have built and used AXUV diode arrays (Alcator C-Mod, DIII-D, TCV, CHS, T-10, T-11M, LHD - ask me for the references)

LADA diagnostic used on NSTX in 2006

Ten AXUV diodes on stand-offs made from DuPont Vespel polyimide material

- LADA means Lyman Alpha Diode Array
- Upgraded CDX-U AXUV array to all UHVcompatible materials
- Replaced pinhole apertures
- Mounted ARC Ly $_{\alpha}$ 1/2" diameter filter purchased by LLNL
- Three apertures: one small and one large for radiometry, Ly_{α} filter for recycling measurements

Front flange with vacuum feedthrough and aperture/filter slider

ARC (Acton Research Corp.) bandpass filter enables VUV Ly_{α} emission filtering

- Open-faced multilayer transmission filter mounted on MgF₂ substrate
- Bandpass is narrow enough to transmit only Ly_{α} light
- Practically no impurity (Li, C, • O) emission lines within bandpass (e.g. Boivin et. al. RSI 72 (2001) 961

LADA diagnostic on NSTX monitored recycling from lower inner wall and inner divertor regions

- Installed on Bay J midplane port in mid-May 2006
- Operated for about one month
- Used ten CAMAC differential amplifiers provided by CDX-U
- Used ten channel PC-based DAQ system provided by JHU
- Channel 1 was vigneted by in-vessel hardware
- Otherwise collected good data (examples on next page)

V. A. Soukhanovskii, LTX Meeting, 15 August 2006, Princeton, NJ

LADA diagnostic on NSTX operated in Ly_{α} and radiometer mode

 Ly_{α} filter mode

 Ly_{α} filter mode

Radiometer mode (no filter)

18

V. A. Soukhanovskii, LTX Meeting, 15 August 2006, Princeton, NJ

LARDA diagnostic for LTX

- LARDA now means
 Lyman Alpha and
 Radiometer Diode Array
- Three positions in the filter slider: one for radiometer aperture, one for 1/2" Ly_α filter, one vacant (can use for other filter or different size radiometer aperture)
- The horizontal rectangular flange mounting provides much better plasma coverage in LTX (vs CDX-U mounting on 4" midplane flange)

V. A. Soukhanovskii, LTX Meeting, 15 August 2006, Princeton, NJ

Options for single AXUV diode channel

- AXUV diodes come in various packaging:
 - No package need to design own mount
 - BNC package can be conveniently mounted in-vacuum on a BNC feedthrough
- AXUV diodes can be coated with multilayer transmission filters by IRD (see next page):
 - Ly_{α} filter available
 - Li III filter for $\lambda = 13.5$ nm
 - Li II filter for λ =19.9 nm
- Another option is to go with ARC transmission filter as on NSTX LADA for Ly_{α} measurements
- IRD also sells trans-impedance variable gain amplifiers for AXUV diodes

Options for LTX single AXUV diode channel

Summary

- LADA diagnostic worked well on NSTX in 2006
- In radiometric mode collected good data on ELM propagation along inner wall
- In filtered Ly_α mode the LADA diagnostic could only detect very bright emission from the inner detached divertor leg region (aperture was too small)
- LADA array is a good candidate for recycling measurements on LTX providing
 - Aperture sizes and mounting geometry properly arranged
 - We understand VUV light reflection from lithium-coated metal surfaces
- Useful links
 - International Radiation Detectors: www.ird-inc.com
 - Acton Research Corporation: www.acton-research.com

V. A. Soukhanovskii, LTX Meeting, 15 August 2006, Princeton, NJ

