

Liquid Lithium Divertor-1 (LLD-1) on Outer Divertor

Final Design Review For LLD-1 Diagnostics

H. W. Kugel and the LLD NSTX, SNL, UIUC Teams July 16, 2008

Outline

(NSTX

• Presenters

- General configuration, H. Kugel
- Rogowski halo current sensors, S. Gerhardt
- Langmuir Probes,
 - Multi-probe Array, J. Kallman
 - UIUC signal conditioners for partial triple probe configuration, M. Jaworski
- Biased electrodes, S. Zweben
- IR Cameras, R. Maingi
- Lyman-α Diode Array, V. Soukhanovskii

Plasma Facing Views of the LLD-1 Copper Plate Substrate

• The plasma surface of the substrate is clad with 0.01 cm of vacuum flame sprayed Mo on a 0.03 cm stainless steel barrier brazed to the 1.9 cm copper substrate.

Bottom View of LLD-1 Copper Substrate Plate Showing Controls and Sensors

- 12 heaters (240v) each with embedded TC for monitoring heater limits
- 12 TC embedded in copper baseplate for monitoring heat transfer
- 2 strips of 4 TC each for monitoring torodial and radial temperature variations
- 1 Center post halo current Rogowski coil for monitoring JxB effects

LLD-1 Segments Are Oriented Relative to Present Bay-H Magnetic Sensors

LLD-1 Toroidal Orientation Relative to Existing Diagnostic Port Allocations

NSTX

N S T X LLD Diagnostic 2008 Port Assignments

LLD-1 Segment Gap Diagnostic Tiles Have Sensors for Control and Characterization

Listed CCW starting at Bay H

- GAP-H Tile
 - 5 magnetic sensors
 - 2 TC (in IR Camera FOV)
- GAP-E Tile
 - 2 BEAP bias electrodes
 - 2 TC (in IR Camera FOV)
 - 5 Langmuir Probes
- GAP-B Tile
 - 120 Langmuir Probes
 (40 sets of 3 toroidal rows)
 [triple (UIUC) and single probes]
- GAP-K Tile
 - 2 BEAP bias electrodes
 - 5 Langmuir Probes
 - 2 TC (in IR Camera FOV)

- LLD segment gap Diagnostic Tiles are double width
- The signal wires will exit the vessel

via feedthru assembles on the

2-3/4 inch lower divertor ports

Existing 2-3/4 Inch CF With Tees Provide Sufficient Electrical Feedthrough Capability

EXAMPLE: 2 FEEDTHRU TEES ON A LOWER DIVERTOR FLANGE

Table 1(pg 1of 3): LLD Wires, Feedthrus

REV: 14JUL08-A

NOTES

1. Definitions Heater TC = TC embedded in heater Cu TC-Htrs = TC embedded in copper next to heater Cu TC-T&R = 4 equally spaced radial TC, embedded in copper 1/3 distance fron each end for monitoring toroidal and radial temperature variation

2. 32 pin connectors were assumed for this study. Ohter pin connectors may be more efficie

LLD SYSTEM		Number	Wire Pairs	Pwr Wires	TC Wires	ProbeWires	Pins per Feedthru	No. Power Feedthrus	No.Instrum Feedthrus
							recutinu	recutinus	recutinus
Section H-E									
	Heaters	12	12	24			32	1	
	Heater TC	12	12		24				
	Cu TC-Htrs	12	12		24				
	Cu TC-T&R	8	8		16				
Gap-E Tiles	BiasElectrode	2				2			
	(Zweben)	5							
	LP					5			
	TC	2	2		4				
Total Pwr				24				1	
Total TC					68				
Total Probe						7			
Total Instru	n (TC + probe	e = 68 + 7 = 3	75 wires)						3

(0)

Table 1(pg 2 of 3): LLD Wires, Feedthrus

REV: 14JUL08-A

LLD SYSTEM		Number	Wire Pairs	Pwr Wires	TC Wires	ProbeWires	Pins per Feedthru	No. Power Feedthrus	No. Instrum Feedthrus
Section E-B									
	Heaters	12	12	24			32	1	
	Heater TC	12	12		24				
	Cu TC-Htrs	12	12		24				
	Cu TC-T&R	8	8		16				
Gap-B Tiles									
	Langmuir								
	Probe Tile-1	40 sets of 3 ro	ows			120	32		3
	TC	2			4				
Total Pwr				24				1	
Total TC					68				
Total Probe						120			
Total Instru	n (TC + prob	e = 68+120 =	188 wires)						6

 $\bigcirc NSTX$

Table 1 (pg 3 of 3): LLD Wires, Feedthrus

REV: 14JUL08-A

LLD SYSTEM		Number	Wire Pairs	Pwr Wires	TC Wires	ProbeWires	Pins per Feedthru	No. Power Feedthrus	No. Instrum Feedthrus
Section B-K									
	Heaters	12	12	24			32	1	
	Heater TC	12	12		24				
	Cu TC-Htrs	12	12		24				
	Cu TC-T&R	8	8		16				
Gap-K Tiles	BiasedElectr	2				2			
	(Zweben)								
	LP					5			
	TC	2	2		4				
Total Pwr				24				1	
Total TC					68				
Total Probe						5			
Total Instru	n (TC + prob	e = 68+ 7 = 7	/5 wires)						3

Section K-H									
	Heaters	12	12	24			32	1	
	Heater TC	12	12		24				
	Cu TC-Htrs	12	12		24				
	Cu TC-T&R	8	8		16				
Gap-H Tiles									
	2D magnetic	5	installed	installed			installed		0
	TC	2	2		4				
Total Pwr				24				1	
Total TC					68				
Total Probe						0			
Total Instru	m (TC = 68 wi	ires)							2

(D) NSTX

Preliminary Feedthru, Connectorization and Cable Costs

LLD Section	TOTAL WIRES	Power Feedthrus	Instrument Feedthrus	Cables
H-E + Gap E	75	1	3	4
E-B + Gap B	188	1	6	7
В-К + GAP К	75	1	3	4
К-Н + GAP Н	68	1	2	3
TOTALS	406	4	14	18

LOADED FEEDTHRU COST = 18 FEEDTHRUS x \$0.5K x 1.3 = \$11.7K

LOADED VACUUM HARDWARE = 2 VACUUM CROSSES PER SEGMENT = 8 CROSSES x \$0.19K x 1.3 = \$2.0K

LOADED CABLE COST = 18 CABLES x \$400 x 1.3 = \$9.4K

LOADED CONNECTOR WIRING COST = (406 CONNECTIONS / 6 CONNECTIONS/hr) = 68 hrs x \$100/HR = \$6.8 K

LOADED TOTAL COST = \$11.7K + \$2.0K + 9.4K + 6.8K = \$29.9K

 $\bigcirc NSTX$

Review of Individual LLD-1 Inter Segment Graphite Diagnostics Tile Sensors

Each LLD-1 Segment Single Point Ground Will Have Rogowski Halo Current Sensor

- Single point grounding post to be surrounded by Rogowski halo current sensor
- LLD-1 Bottom View
- Clamp fastens Grounding Post to divertor copper plate

 Grounding Post and Clamp dimensions can be adjusted to accommodate Rogowski Halo Current sensor

S. Gerhardt, L. Guttadora, R. Ellis

The Existing 2D Magnetic Sensors at Bay H Will Be Preserved

- The 5 present 2D magnetic Sensors at Bay H Lower Divertor are used for control and analysis.
- It is desirable to keep these sensors.
- The Design Plan:
 - the existing cables will be cut at the tiles.
 - the old tiles with embedded sensors will be removed.
 - new tile with fresh identical sensors will be connected to the existing cabling and reinstalled.
 - all external wiring and cabling will remain unchanged.
 - the standard calibration procedures can be applied to the identical replacement sensors.

Tile Langmuir Probe Array - Physics and Design Requirements

 $\bigcirc NSTX$

- I. Physics Requirements
 - Need sufficient radial resolution over heat-flux profile width at strike point (~ 10 cm)
 - Probes should straddle LLD radially so as to provide both Li and Carbon data
 - Desire high temporal resolution in order to measure transient edge events (ELMs)
- II. Design Requirements
 - UIUC will provide signal conditioning and data acquisition electronics for triple probes
 - Probes in each triple set should be at same radial location in order to avoid effects of gradients in edge parameters

Tile Langmuir Probe Array - Detail

Tile is ~13 cm long radially, spanning 7° toroidally

Probes cover ~10 cm and are spaced 0.5mm apart

Probe heads are 2.5x7mm rectangles

Tile top view

Probes will be mounted in
 macor cassettes and wires run
 out through side channels

J. Kallman, R. Kaita, R.Ellis, M. Jaworski 17

LLD and SOL Interactions on NSTX **Final Design Review Slides**

M. A. Jaworski and D. N. Ruzic

University of Illinois at Urbana-Champaign

July 16, 2008

UIUC-NSTX Collaboration Final Design Review July 16, 2008

Overview of UIUC Contribution

- UIUC provides electronics for triple probe system
 - Bias power supply and electronics
 - Signal conditioning and data acquisition
 - Control room operator and analyst
- Triple probe system designed for extendability
 - Each probe consists of 3 tips + GND connection
 - System designed on a "per probe" basis allowing easy addition to electronics packages

Center for Plasma Material Interactions

UIUC-NSTX Collaboration Final Design Review July 16, 2008

Modular Electronics

- Primary DC source provides "bus" power
- Isolated DC supplies for each TLP
 - Flyback converter topology
 - Independently regulated
 - Independent arc protection and shut-down
 - Independent signal conditioning
 - Straight-forward extension to additional TLPs - "plug in" more modules

- DC Primary Supply 1 Intiple Probe Isolated DC supply 2 Triple Probe Isolated DC supply 3 Triple Probe Isolated DC supply 3 Triple Probe
- Acquisition for N=10 probes initially planned
 - 125kHz bandwidth limit
 - 16-bit resolution
 - 10¹³ cm⁻³ @ 100eV limit on I_{sat}
 - 1% of 10¹¹ cm⁻³ @ 10eV
 - Initial estimates: adjustable if needed

Testing to occur at UIUC

Ľ

PHYSICS LORD

UIUC-NSTX Collaboration Final Design Review July 16, 2008

Diagnostic Tile and LLD-1 Thermocouples

• The inter segment graphite Diagnostic Tile TCs will be installed using proven NSTX graphite armor design

- TC inserted into well in graphite and potted *in situ* with graphite ceramic cement.
- The LLD-1 TCs will be installed using proven NSTX NBI calorimeter and armor designs
 - coated with high temperature, silver-based conductive epoxy, inserted into 1/16 inch ID hole in copper, and secured by a ping.
 - or TC clad in threaded 304-SS sheath screwed into tapped hole.

R. Ellis, M. Cropper

2 Diagnostic Tiles 180° apart with Biased Electrodes Enable Unique Measurements During LLD

Goals: • test Ryutov/Cohen idea for divertor plate SOL control

- measure penetration of electric field II and ⊥ to B using cameras and local Langmuir probes
 - check toroidal angle dependence of SOL width

2 Diagnostic Tiles 180° Apart, Each with Two Biased Electrodes and 5 Langmuir Probes

- Graphite electrodes (green): 5 cm x 1 cm, one pair II and one pair \perp B
- Langmuir probes: 5 single probes, 1/16" diameter, radially arrayed
- External bias and probe drive/digitizers use existing BEaP hardware

External Diagnostics for LLD-1 Characterization

- IR Cameras
 - Fast IR Camera (downward FOV)
 - 2 Slow IR Cameras (upward and downward FOV)
- Lyman- α Diode Array

2 IR Cameras Will Monitor LLD-1 Operation (Slow) and Characterize ELM Interactions (Fast)

PRINCETON PLASMA PHYSICS LABORATORY

Lyman- α arrays to be used for recycling rate measurements from highly reflective LLD

Mirror-like lithium surface will complicate interpretation of visible (400-750 nm) spectroscopic diagnostics

AXUV diode arrays with bandpass filters measure Ly- α *n*=1-2 H/D transition at 121.6 nm, where reflections are negligible

16-20 channel diagnostic can be assembled from off the shelf components for 10 K, plus 10-15 K for DAQ system

One array will be fielded in FY09 at Bay G upper divertor port

Cost and Time

- 🔘	NSTX
-----	------

\$K TECH \$K ENG \$ LLD FEEDTHRUS, CABLES 23.10	SYSTEM		LOADEDM&S	TECH Mhrs	LOADED	ENG Mhrs	LOADED
LLD FEEDTHRUS,CABLES 23.10 Connectorization 68 6.8 Connectorization			\$K		TECH \$K		ENG \$K
LLD FEEDTHRUS,CABLES 23.10							
CONNECTORIZATION 68 6.8		RUS.CABLES	23.10				
ROGOWSKI (4) 1.00 80 8	CONNECTOR	IZATION	20120	68	6.8		
ROGOWSKI (4) 1.00 80 8							
2D MAGNETIC SENSORS 40 4	ROGOWSKI	(4)	1.00	80	8		
2D MAGNETIC SENSORS 40 4 40 4 LP PROBES 0.50 80 6 6 ITHERMOCOUPLES 0.50 40 4 6 THERMOCOUPLES 0.50 40 4 6 BIASED ELECTRODES 0.50 40 4 60 10.8 IR CAMERA PERISCOPE 3.00 40 4 60 10.8 Lyman-α ARRAY 32.50 40 4 40 1.8 CABLE ENGINEERING 160 28.8 160 28.8 SUB TOTALS 61.10 428 40.8 420 70.2							
LP PROBES 0.50 80 6	2D MAGNET	IC SENSORS		40	4		
Image: Construction of the second state of the second			0.50	80	6		
THERMOCOUPLES 0.50 40 4 40 4 BIASED ELECTRODES 0.50 40 4 60 10.8 BIASED ELECTRODES 0.50 40 4 60 10.8 IR CAMERA PERISCOPE 3.00 40 4 60 10.8 Lyman-α ARRAY 32.50 40 4 40 1.8 CABLE ENGINEERING 160 28.8 160 28.8 DAQ ENGINEERING 160 28.8 160 28.8 SUB TOTALS 61.10 428 40.8 420 70.2	LP PROBES		0.30	00	0		
BIASED ELECTRODES 0.50 40 4 60 10.8 IR CAMERA PERISCOPE 3.00 40 4 60 10.8 IR CAMERA PERISCOPE 3.00 40 4 60 10.8 Lyman-α ARRAY 32.50 40 4 40 1.8 CABLE ENGINEERING 160 28.8 160 28.8 DAQ ENGINEERING 160 28.8 160 28.8 SUB TOTALS 61.10 428 40.8 420 70.2	THERMOCOL	JPLES	0.50	40	4		
BIASED ELECTRODES 0.50 40 4 6 IR CAMERA PERISCOPE 3.00 40 4 60 10.8 IR CAMERA PERISCOPE 3.00 40 4 60 10.8 Lyman-α ARRAY 32.50 40 4 40 1.8 CABLE ENGINEERING 160 28.8 DAQ ENGINEERING 160 28.8 SUB TOTALS 61.10 428 40.8 420 70.2							
IR CAMERA PERISCOPE 3.00 40 4 60 10.8 IR CAMERA PERISCOPE 3.00 40 4 60 10.8 Lyman-α ARRAY 32.50 40 4 40 1.8 CABLE ENGINEERING	BIASED ELE	CTRODES	0.50	40	4		
IR CAMERA PERISCOPE 3.00 40 4 60 10.8 Lyman-α ARRAY 32.50 40 4 40 1.8 Lyman-α ARRAY 32.50 40 4 40 1.8 CABLE ENGINEERING Image: constraint of the second s							
Lyman-α ARRAY 32.50 40 4 40 1.8 Lyman-α ARRAY 32.50 40 4 40 1.8 CABLE ENGINEERING Image: constraint of the second s	IR CAMERA	PERISCOPE	3.00	40	4	60	10.8
Lyman & ARRAY 32.30 40 4 40 1.8 CABLE ENGINEERING Image: constraint of the second			22.50	40	4	40	1.0
CABLE ENGINEERING 160 28.8 DAQ ENGINEERING 160 28.8 SUB TOTALS 61.10 428 40.8 420 70.2			32.30	40	4	40	1.0
DAQ ENGINEERING Image: Constraint of the second secon	CABLE ENGI	NEERING				160	28.8
DAQ ENGINEERING 160 28.8 SUB TOTALS 61.10 428 40.8 420 70.2							
SUB TOTALS 61.10 428 40.8 420 70.2	DAQ ENGIN	EERING				160	28.8
SUB TOTALS 61.10 428 40.8 420 70.2							
SUBTOTALS 61.10 428 40.8 420 70.2			61.10				70.0
	SUB TOTAL	5	61.10	428	40.8	420	70.2
TOTAL M&S 61.1	TOTAL M&S		61.1				
TOTAL LABOR 111	TOTAL LABO	R	111				
TOTAL COST 172.1	TOTAL COST		172.1				

Summary and Conclusions

- Onboard Sensors on each LLD 90° Segment:
 - 12 TC embedded in the heaters for monitoring heater limits
 - 12 TC embedded in copper baseplate for monitoring heat transfer
 - 2 strips of 4 TC each for torodial and radial temperature variations
 - 1 Center Post halo current Rogowski for monitoring JxB effects
- Diagnostics in the inter-segment graphite Diagnostic Tiles:
 - Bay H: existing 2D magnetic sensor array and 2 TC
 - Bay B: 120 LP array with some UIUC signal conditioners for triple probes
 - Bay E and Bay K: 2 Biased electrodes, 5 LP, 1 TC
- External Diagnostics:
 - Bay G: Slow IR Camera, Bay E: Fast IR Camera
 - Bay _: Lyman- α Diode Array
- Unresolved Diagnostic needs:
 - LLD lithium thickness and activation, and its toroidal variation
 - LLD 360° viewing capability

