

Summary of Planning for Liquid Lithium Divertor Conceptual Design Review And FY08 Installation

H. W. Kugel, R. A. Ellis III, R. E. Nygren

December 18, 2007

The Physics Goal and Specifications for FY09 LLD Operation

Physics Goal for LLD

• Determine effectiveness of large area liquid surface for pumping in lower divertor region

LLD FY09 Technical Specifications

- Location lower outer divertor, 2.5-5 cm outboard of CHI gap, 15-20 cm wide
- Shape conical section
- Surface Li/Mo?/SS/Cu (LTX style plate)
- Lithium loading method Dual LITER for Li coatings
 - Will test preloading, and loading solids
- Heating resistive, helium, or suitable liquid (engineering analysis TBD)
- Cooling helium or suitable liquid (engineering analysis TBD)

NSTX

The Following Design Has Been Chosen to Meet the 2008 Installation Schedule

1) Copper baseplates to be installed in four sections - Includes heaters for temperature control

2) Thin stainless steel brazed liner to protect copper from molten lithium

- Covered with plasma-sprayed molybdenum or "passivated" lithium
- 3) Thin liquid lithium coating as plasma facing component - Lithium from evaporator or deposited in solid form
- 4) Use of copper with stainless steel liner based on LTX shell experience
- 5) Evaporation for lithium coatings based on NSTX LITER experience

NSTX

90°SEGMENT

FASTENER

FASTENER EXPANDED

Evolution of NSTX-Sandia Lab Collaboration

Proposed FY07 work: Mo mesh design, thermal analyses, Mo wetting tests **Status:** late start, concept modifications, design/analysis/testing (not completed)

A. Mo mesh in tray – motivation: best thermal diffusion

Install LLD,	Liquid Li fill	Keep Li liquid	LLD
pump&bake	(ala CDXU)	(no cleaning)	expmts

B. Mo coated plate – motivation: LTX technology, known mat'ls

Evolution of NSTX-Sandia Lab Collaboration

Proposed FY07 work: Mo mesh design, thermal analyses, Mo wetting tests **Status:** late start, concept modifications, design/analysis/testing (not completed)

A. Mo mesh in tray – not in FY08

Install LLD,	Liquid Li fill	Keep Li liquid	LLD
pump&bake	(ala CDXU)	(no cleaning)	expmts
	4 ports, 4-5 d	Unacceptable risk	

Rethink: 1. Li supply/wetting; 2. Li contamination/cleaning Schedule-driven solution – simplest, heat removal not great

B. Mo coated plate – FY09 Operation

Install LLD,	evaporate Li	contaminate	recoat	LLD
pump&bake	(improved)	(low sputter)	Li	expmts

C. Filled Mo mesh – development for FY10/NHTX More complex, more development time, better heat removal

backup

Sketches of Li Wetting Test Chamber

Thanks for PPPL summer internship by Laura Berzak

Laura (NNSA Fellowship) was excellent "LLD Lieutenant"

- System requirements, diagnostics for wetting test
- Visual Basic program for TCs, benchtop validation
- Directed technicians and other students on vac chamber
- Authored test plan for wetting test

