NSTX Liquid Lithium Divertor-1 Final Design Review for Mechanical Design

Presented by the LLD team at PPPL April 22, 2008

Presentation Overview

- Mechanical Engineering Design and Analysis
 - R. Ellis, R. Nygren
- Cost and Schedule
 - R. Ellis
- Summary
- The scope of this review is the design and analysis of the mechanical components of the Liquid Lithium Divertor for NSTX. Controls and Diagnostic Interfaces will be addressed at a separate review.

Mechanical Engineering Design

- Design Requirements
- Design Overview
- Geometry Definition
- Design Description
- Thermal Analysis R. Nygren
- Electromagnetic Analysis

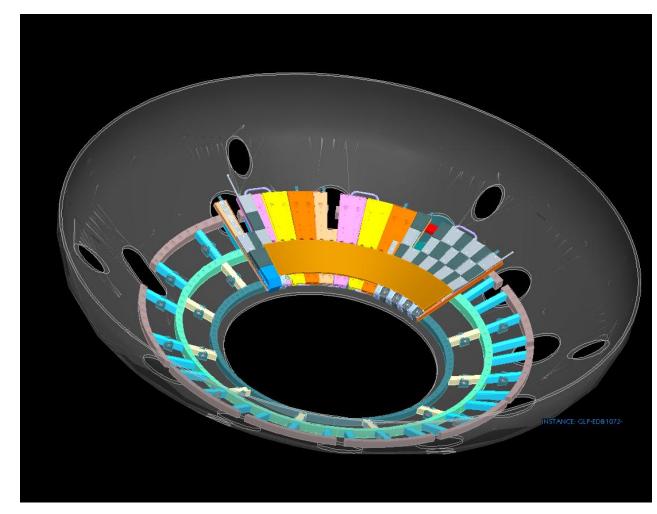
Mechanical Design Requirements

- Location outer divertor, ~5cm outboard of CHI gap, ~15-20cm wide
- The LLD is segmented into quadrants for ease of installation.
- The temperature must be maintained between 200C and 400C during operation.
 - Lithium will melt and wet surface at 200C, evaporate at 400C.
 - Heating and cooling systems will be required.
- The materials used must satisfy NSTX requirements.
- Loading and replenishing of lithium should be accomplished without breaking NSTX vacuum.
 - Initially fill by evaporating from LITERs.

Mechanical Design Overview

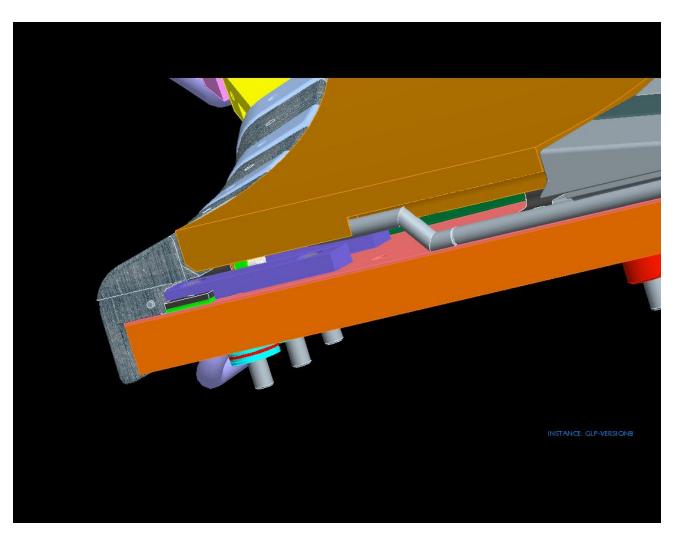
- The LLD is located on the outer divertor.
 - Replaces first two rows of tiles.
- Conical geometry follows the shape of the divertor.
- Thin layer of stainless steel bonded to a thick layer of copper, with a thin layer of Mo plasma sprayed on top of the stainless steel.
 - Copper provides thermal diffusivity.
 - Mo facilitates wetting by lithium.
- Heating and cooling systems required for divertor.
 - Maintain the desired temperature range for Li.
- Four quadrants comprise LLD.
 - Segmentation facilitates handling and installation.
- Supports use existing tapped holes on passive stabilizer plates.

Geometry Definition


- The LLD is to be located on the outer divertor.
 - ~5cm outside of CHI gap [inside radius is 65.51cm [25.790in].
 - Graphite tiles between CHI gap and LLD.
- The width is 20.00cm [7.874in] radially.
 - 23.10cm [8.463in] along top surface
 - Supplants first two rows of tiles on outer divertor.
 - Exact width was determined by location of available tapped holes for supports, interface with tile row 3.
- The top surface is 3.81cm [1.500in] above passive stabilizer surface.
 - Try to keep as close to original divertor profile as possible.
- Each quadrant covers 82.5degrees toroidally.
 - Double width [7.5degrees] tiles between each segment.

Design Description

- Basic Plate Geometry
- Heating System
- Instrumentation
- Wire Routing
- Cooling System
- Supports
- Replacement tiles
- Fabrication Process
- Assembly Sequence


Basic Plate Geometry

- Plate geometry follows outer divertor geometry.
 - 48 copper plates under outer divertor
 → each plate covers 7.5deg.
 - 2 graphite tiles toroidally per plate.
- Each quadrant of LLD covers 82.5 degrees.
 - Center of plate bisects a copper plate.
 - 2 graphite tiles toroidally between quadrants.

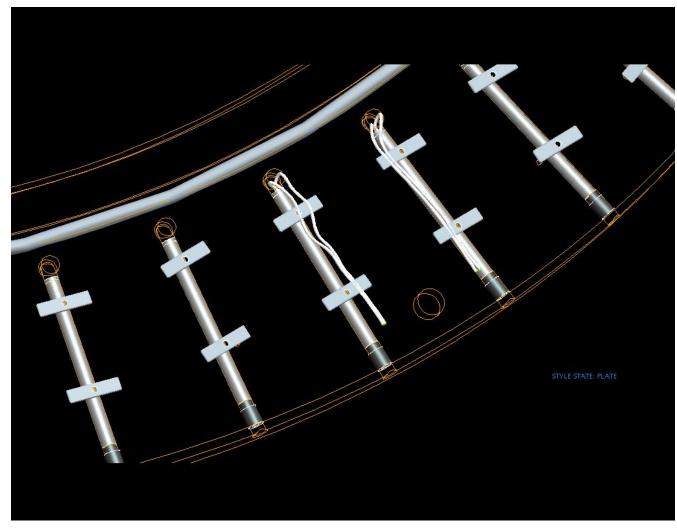
Plate Follows Outer Divertor Geometry

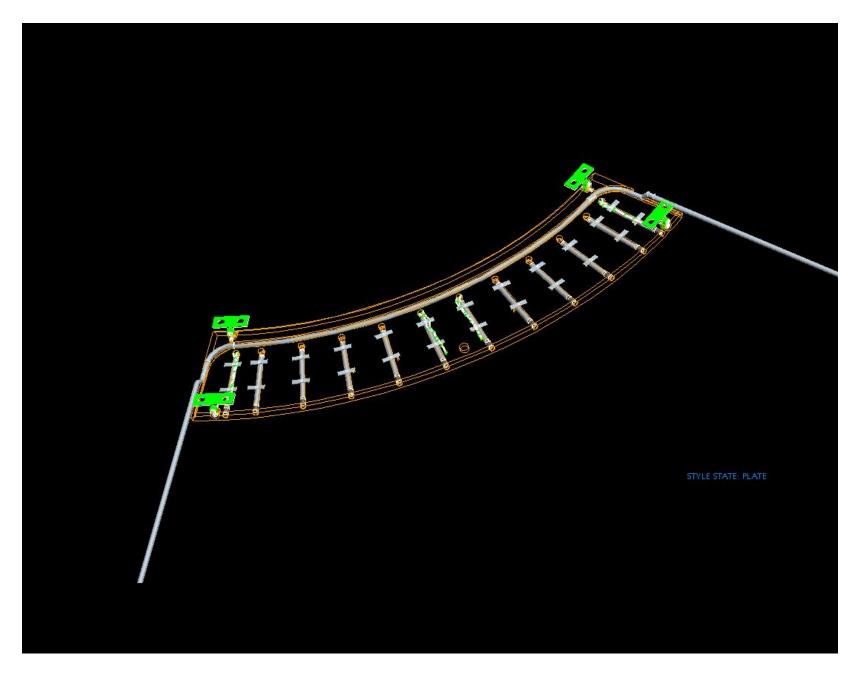
- Plate is .875" [2.22cm] thick.
- Inside corner is at R=25.790" [64.58cm].
- Plate is inclined at 21.5 degrees from horizontal.
- Top and bottom faces are 8.463" [21.50cm] long.
- Top surface is 1.5" [3.81cm] above copper stabilizer plates.
- Transition from 1" [2.54cm] required in row 3 tiles.

Basic Plate Geometry

- Inside corner is at R=25.790" [64.58cm].
- Top outside corner is at R=33.664" [85.51cm]
- Area of top surface = 362.3in² [2337cm²]
- Area of bottom surface = 366.2in² [2362cm²]
- Area of inside surface = 32.7in² [211cm²]
- Area of outside surface = 42.7in² [275cm²]
- Total surface area = $803.9in^2$ [5185cm²]
- Estimate volume of plate
 - Cross section area is 7.405in² [47.8cm²]
 - Radius of centroid is 29.887in
- Volume is 318.7in³ [5222cm³]
 - Mass is ~96lbm [43kg]

A Heating System will Maintain the Temperature Above the Wetting Temperature [see Sandia analysis]

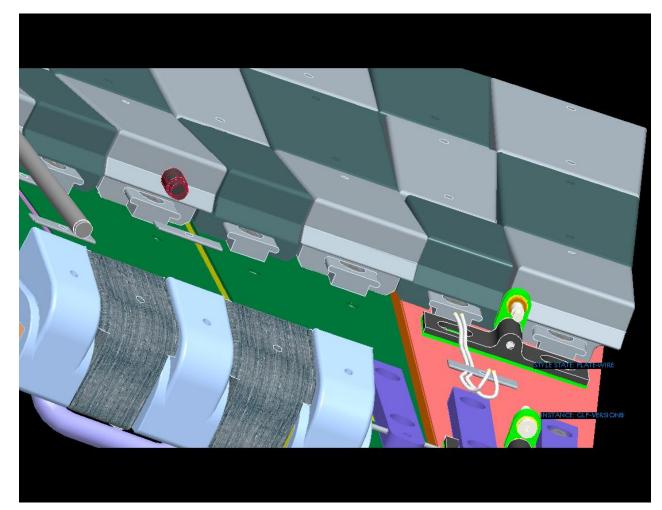

- For initial wetting, we want to be able to maintain the temperature of the plate at 350C [623K].
- Essentially all power loss from the plate is through radiation.
- Assume 20C [293K] sink temperature and blackbody radiation from all plate surfaces.
- Heat flux is .81W/cm², surface area is 5185cm²→power is 4200W.
 - 1240W for 200C surface temperature
- Commercially available cartridge heaters will be used.
- We are using twelve 500W heaters per quadrant.
 - 6000W per quadrant.


$$q'' = 5.669 * 10^{-12} (623^4 - 293^4) = .81W / cm^2$$

Commercially Available Cartridge Heaters will be Used

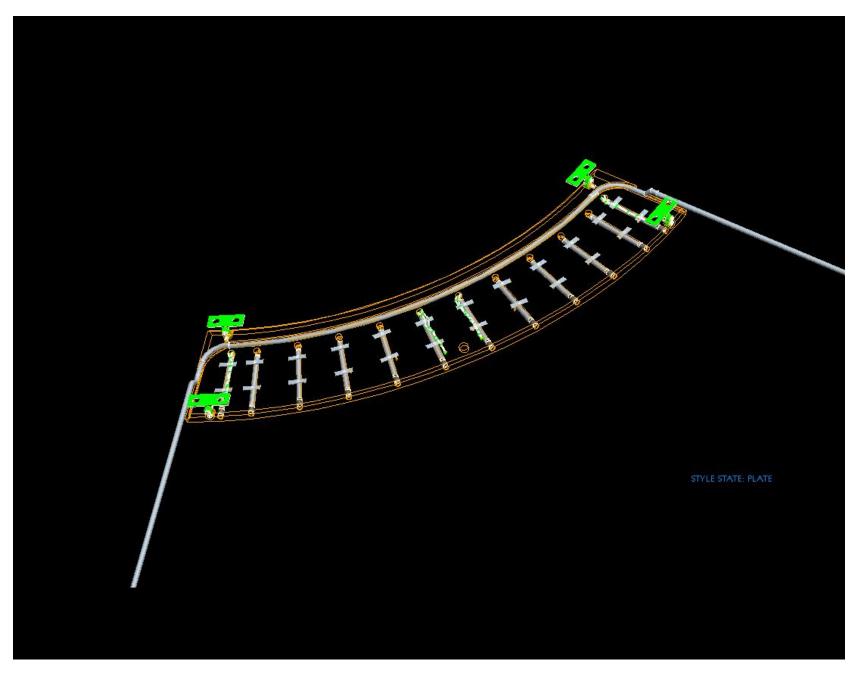
- Omega CSH-205500
 - 240V
 - .375"dia, 5" long
 - 500W each
 - 300SS sheath
 - Ceramic bead insulation allows 650C operating temperature.
 - Integral thermocouples
- All heaters will have integral thermocouples.
- The heater arrangement provides maximum protection for the wiring.
 - Heaters are installed into drilled and reamed holes leads first, wave spring and threaded plug retain heater, internal wire routing.

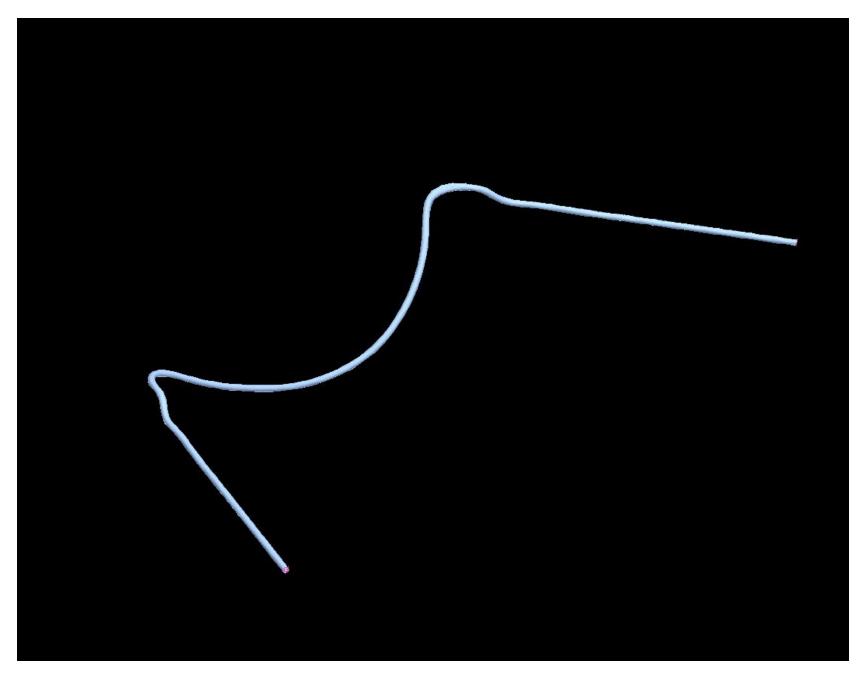
The Heater Arrangement Provides Maximum Protection for the Wiring


4/21/2008

Thermocouples, on LLD Plate and Inside some Heaters, Provide Temperature Measurement

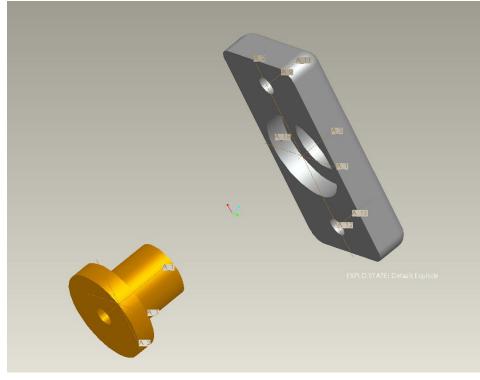
- Twelve thermocouples in the plate.
 - ~.63cm [.25in] from each heater.
 - Used for temperature measurement and control.
- One thermocouple inside each heater [12 total].
 - Used for protection of heaters.

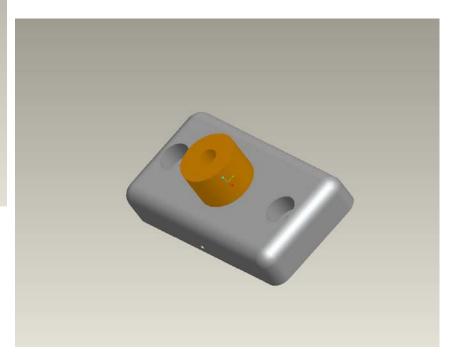

Wires are Routed Between LLD and Passive Stabilizer.


- 24 wires for thermocouples.
- 48 wires for heaters with integral thermocouples.
- 72 wires total per quadrant.
- Wires exit the outboard edge of the LLD at a toroidal location between tiles.

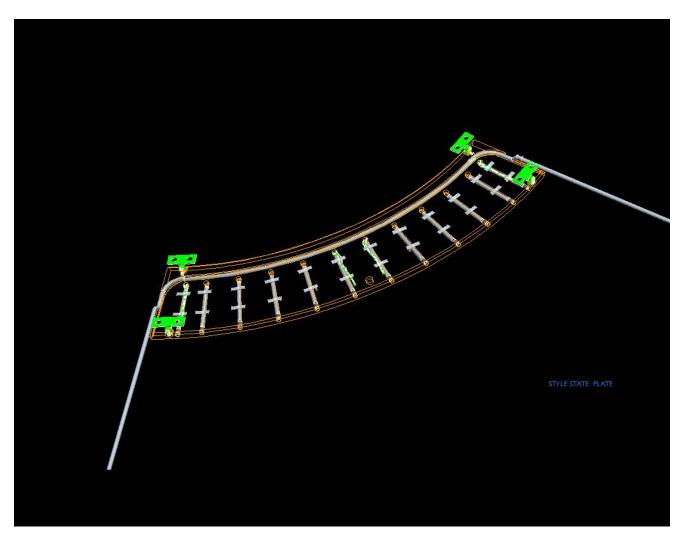
A Cooling System Assures that Temperature Returns to 200C Between Pulses [see Sandia analysis]

- Cooling by radiation is not adequate for operation at maximum duty cycle.
- Average heat flux across LLD surface is <100W/cm².
- Equivalent steady state flux for a 1.5sec/600sec duty cycle is .25W/cm² on plasma facing surface.
 - Equivalent steady state power for A=2337cm² is 584W per quadrant.
- Evaluate radiation from top and bottom surfaces to 50C sink with emissivity of 0.1:
 - Area = $2337 + 2362 = 4642 \text{ cm}^2$
 - 200C→103W
 - 300C→255W
 - 400C**→**511W

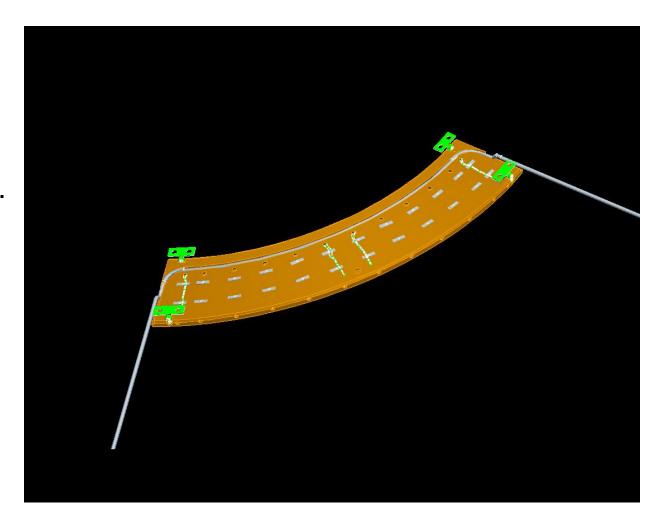



Supports Position the LLD, Accommodate Thermal Expansion, and Resist Electromagnetic Loads

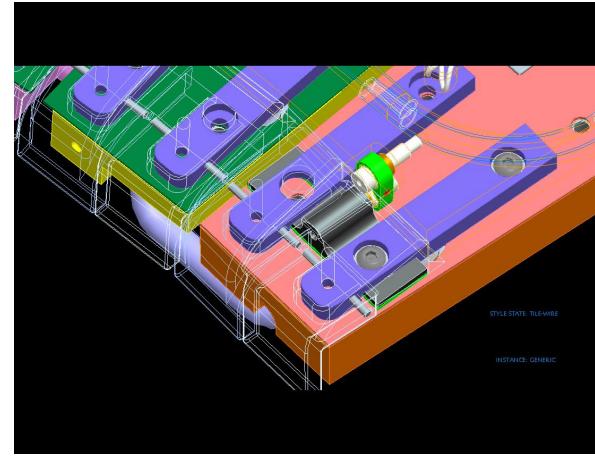
- The LLD must not short out the passive stabilizer plates.
 - Single point ground to stabilizer plates.
 - Other support points are insulated.
- Plan for a 400C maximum temperature difference between LLD and stabilizer plates.
 - At R~33", we have .211" expansion toroidally for one quadrant. $\Box \alpha \sim 1.6*10^{-5}/K$
- We will use five support points for each quadrant.
- A locating pin, near the outside edge, positions the LLD quadrant in the plane of the stabilizer plate.
 - Grounding strap from stabilizer plate to LLD near pin.
- Four insulating link supports at corners provide vertical positioning.
- The outer two supports provide radial positioning as well.


A Locating Pin Positions the LLD Quadrant in the Plane of the Stabilizer Plate

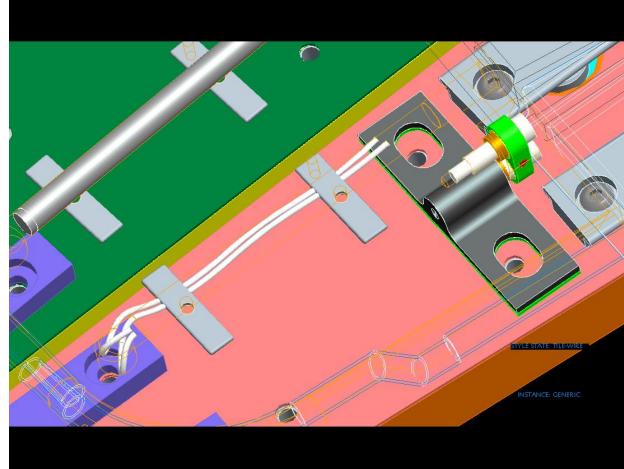
- 0.75" diameter plug
- Mounts to Passive Stabilizer with two ¼-20 screws

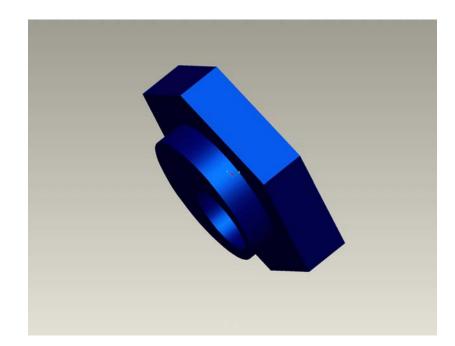


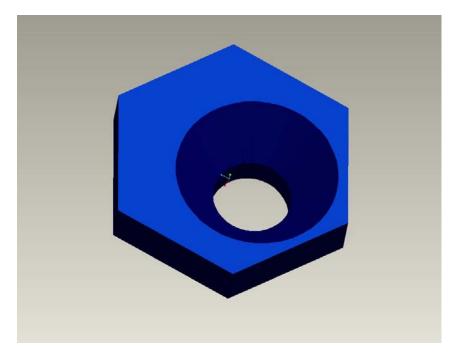
Locating Plug Mates to Hole in Bottom of LLD Plate

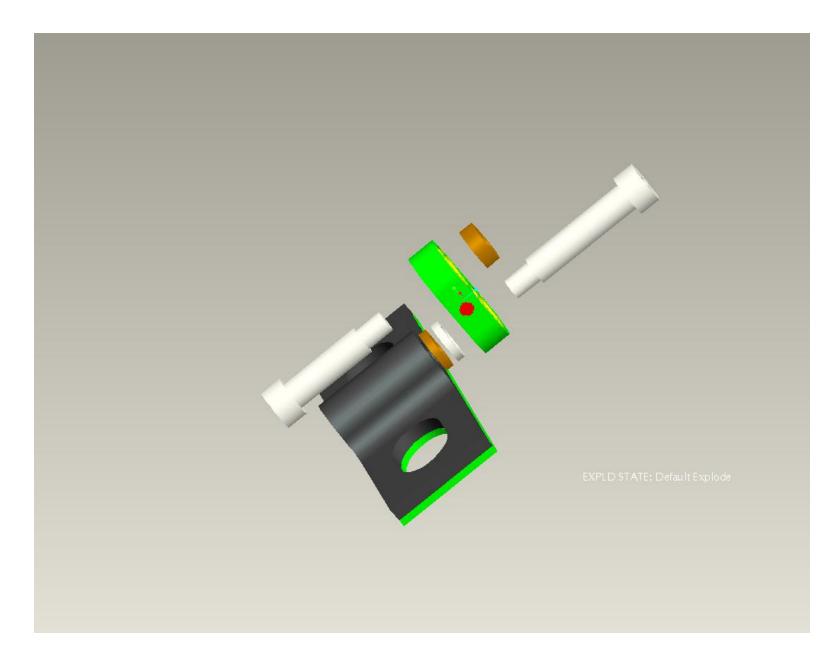

Four Insulating Link Supports at Corners Provide Vertical Positioning

- Links provide for .1" of toroidal motion with .01" drop towards passive stabilizers.
- Ceramic coated shoulder screws, aluminum bronze bushings and ceramic coated washers provide insulation.
 - Jet Lost α design

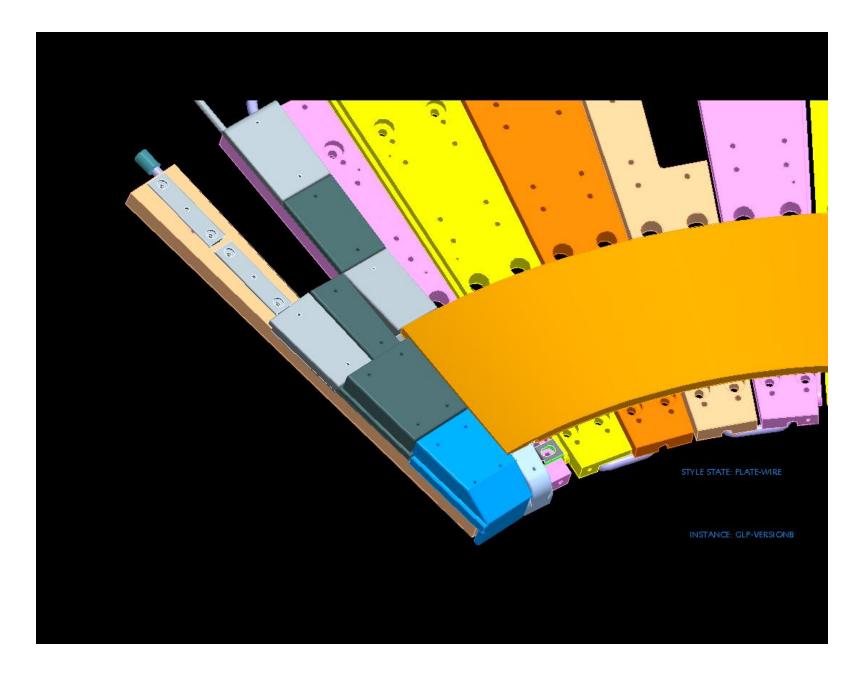

Ceramic Coated Screws and Washers Provide Insulation

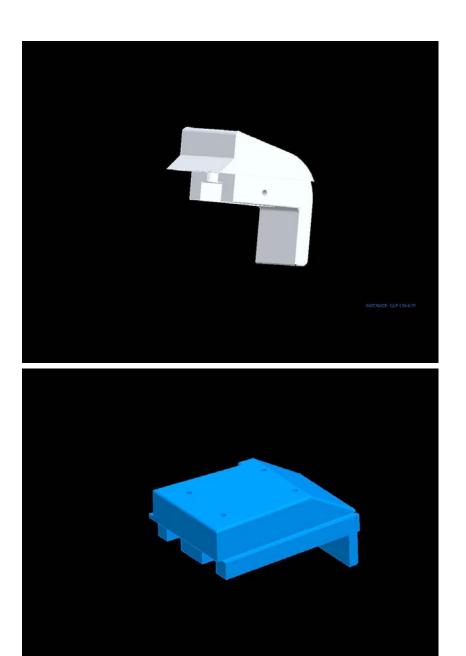

- Supports provide for .063" of nominal shim thickness, ±.19" horizontal travel.
 - Requirements come from Priniski measurements of passibe stabilizer plates summer 2007.
- One insulating break shown; insulation at both shoulder screws is easy.
- Shear strength of shoulder screw is 736lbf. [15ksi]

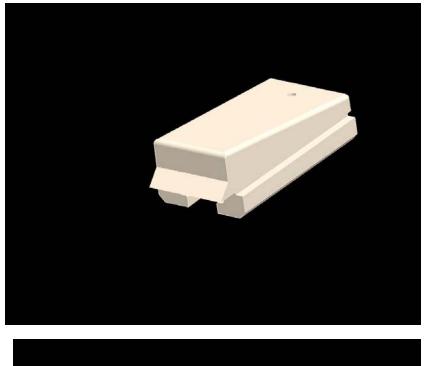


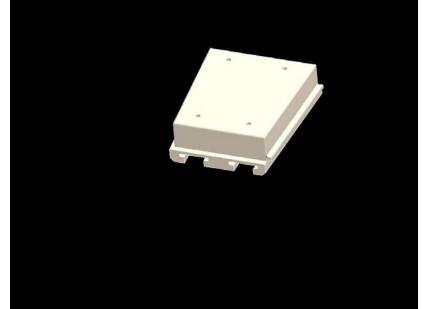

Slots and Eccentric Hex Bushing Provide Horizontal Adjustment

- Each support mounts to two existing ¼-20 tapped holes in passive stabilizer plate.
- A ¼-20 FHCS secures the eccentric hex bushing to the support and stabilizer plate.
- Set screws in bracket and LLD plate secure shoulder screws.






4/21/2008


New Tiles are Required at LLD Boundaries

- Replacement tiles for row 1 and row 3 are required.
 - 192 total.
- Double width tiles at toroidal gap.
 - Eight total.
- Chamfered/rounded edges of tiles and LLD will be required.
- Relative thermal growth of LLD and passive stabilizer assembly must be accounted for.
 - ~0.30cm [.12in] gap toroidally.
- Row three tiles incorporate transition from 1.00in to 1.50in above passive stabilizer surface.

4/21/2008

Fabrication

- Brazing is a feasible concept.
 - Lower temperature braze for cooling tube after plate bending and machining.
 - We have extensive experience brazing copper to stainless steel.
- HIP bonding of stainless steel to copper may also be a feasible technique, but further development is required.
- The curved plate presents the challenge.
- Supports are straightforward.

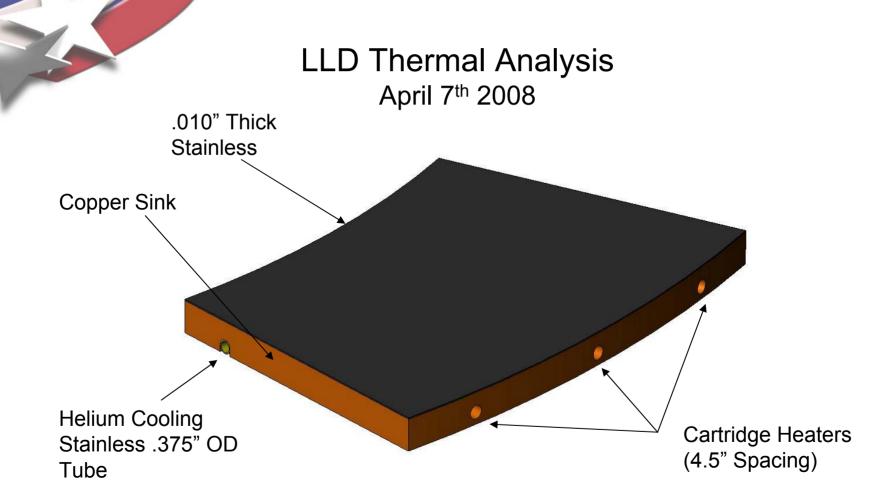
Initial Fabrication Step is Constructing a Cu/St.Stl. Flat Plate

- Brazing is a viable option that does not involve R&D.
 - Cu/SS brazing is a routine process.
 - Need to start with ~0.1" thick SS plate, machine off excess.
 - Requires a second braze for cooling tube.
- Developed view of 85degree segment fits into a 46" * 16" plate.
 - Within capabilities of numerous commercial brazing facilities.
 - Near limit of PPPL furnace.
- Hot Isostatic Pressing [HIP] may also be feasible.
 - Allows maximum temperature braze for cooling tube.
 - Cost of fixtures is an issue.
 - Further development is required.

Plates are Bent and Machined to Final Configuration

- Bend in steps to achieve conical geometry.
 - 3.75degree or 7.5degree intervals.
 - Bend angle is 1.3degrees or 2.6degrees.
 - Bend, anneal, measure, bend again if required.
- Machine to final configuration.
 - Holes, cooling tube channel, chamfers etc.
- Vendors such as Hollis, General Tool, Major Tool, Ranor are capable of these processes.

Assembly

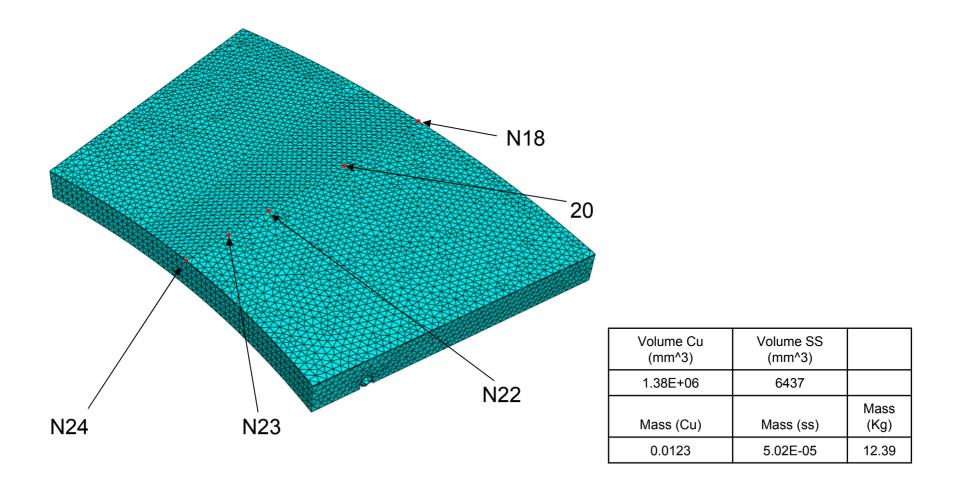

- Once a quadrant is fabricated, the heaters, thermocouples, wires and supports are installed and tested.
- 2man-weeks per quadrant.
- In the vessel, the locator plug is first installed on the appropriate passive stabilizer plate.
- Using a locating jig, the quadrants are positioned in the vessel, one by one, using nominal shims.
- Position of each quadrant is measured, revised shim thicknesses are calculated.
- Each quadrant is then secured, and the routing of wires and cooling leads is finished.
- After final measurement, remaining tiles are installed.
- Assembly \rightarrow 2man weeks per quadrant inside vacuum vessel.

Thermal Analysis

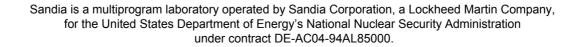
- Bounding calculations presented at CDR.
- 3-D finite element analysis performed by Sandia verifies initial calculations and provides more detailed results.
- Summary of CDR results:
 - Film coefficient > $.06W/cm^{2}K$ can be obtained with He.
 - Verified by Sandia tests [.09W/cm²K]
 - 12 * 500W heaters provide adequate power.
 - Acceptable front surface temperature rise for 200ms pulse.
 - Temperature drop between heaters is acceptable, even if one heater fails.
 - Equilibration and cool down times are reasonable.

3-D Finite Element Analysis Verifies CDR Calculations and Provides more Detail

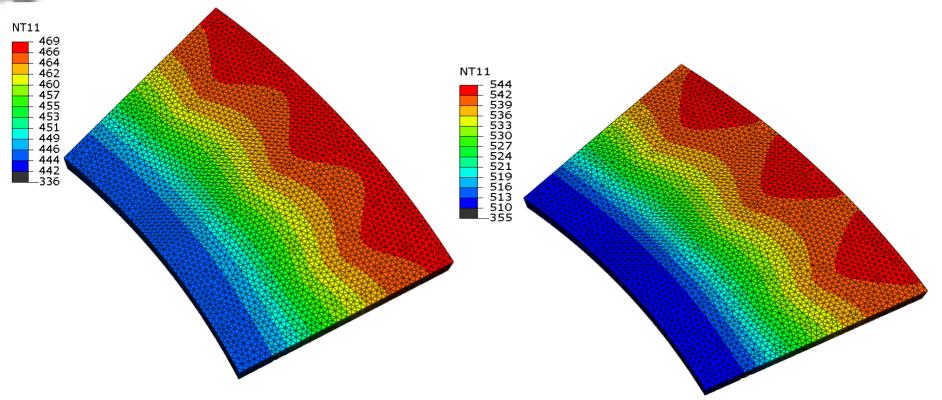
- Summary of Sandia Results
 - Heating power is adequate.
 - Cooling system should be shut off during heating; it absorbs ~30% of heater power.
 - Front surface temperature rise is less than 200K for a strike point sweep rate of 50cm/sec.
 - Cool down time with Helium is adequate.
 - Radiation only gives ~1hour.
- <<Sandia analysis to be inserted here.>>



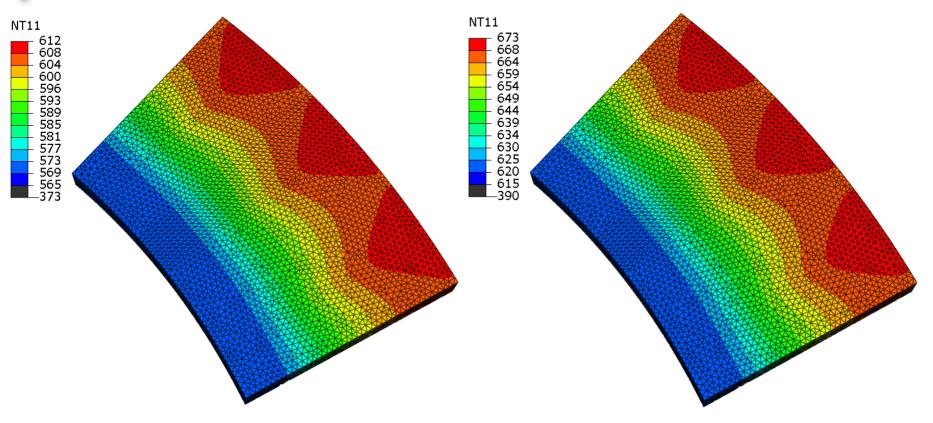
Material	Temp (K)	Density [Mg/mm^3]	Conductivity [mW/mmK]	Specific Heat [mJ/MgK]	emissivity
Copper	273	8.96E-09	401	3.90E+08	0.3 (slightly Oxidized)
	273	7.968E-09	13.7	4.65E+08	
Stainless Steel	923	7.693E-09	23	6.03E+08	0.2 (vapor deposited Moly)



Node Locations for Temperature Response Plots

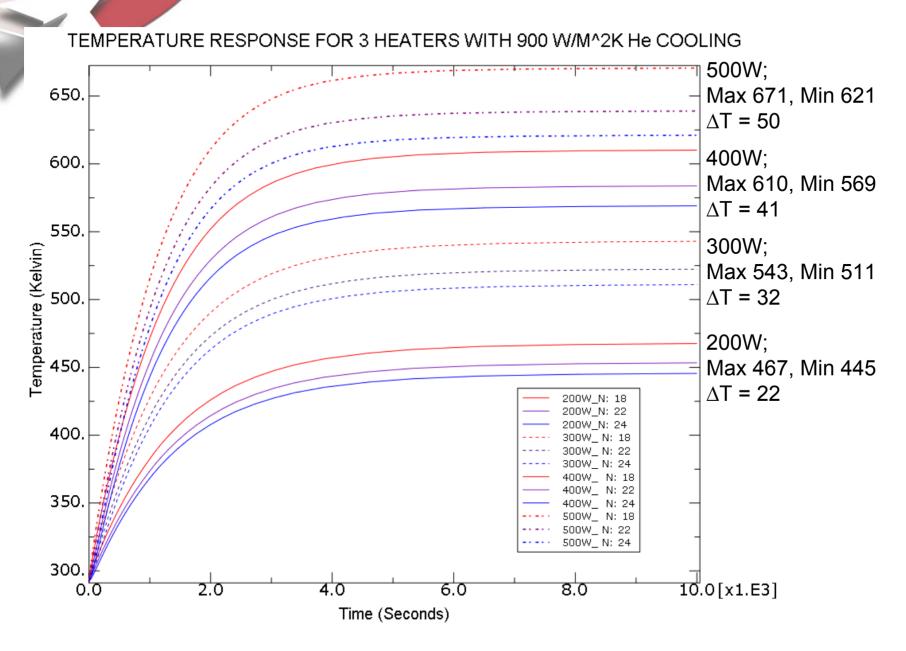


Temp Profile 3 Heater Simultaneous Heating and Cooling (900 W/M²K He cooling).


- Time Step 170 Minutes
- 200W Heating (53 mW/mm²)

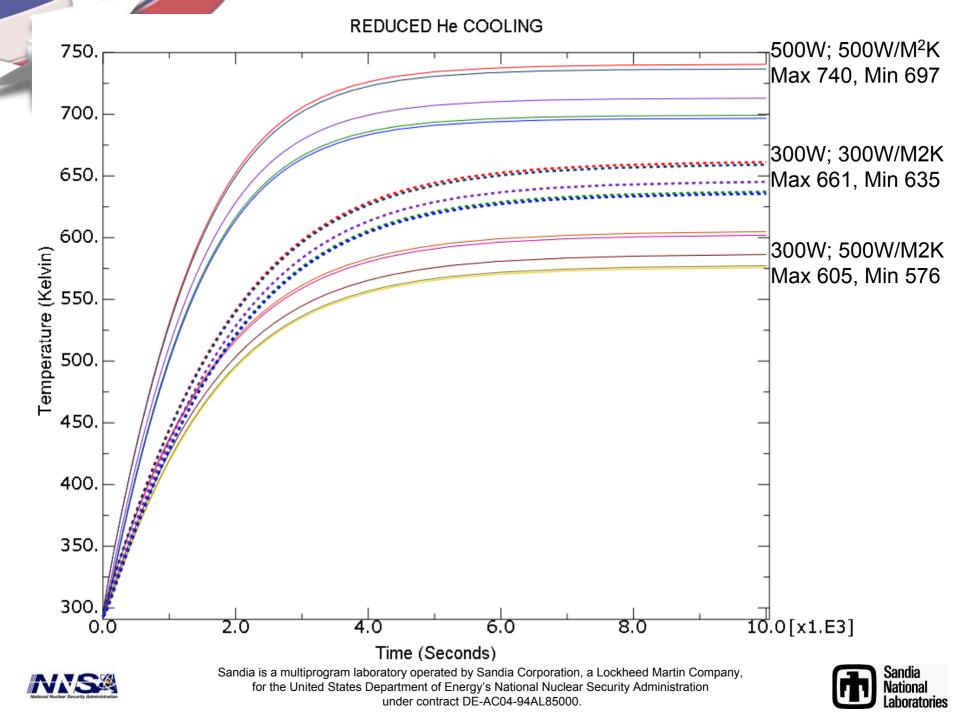
- Time Step 170 Minutes
- 300W Heating (79 mW/mm²)

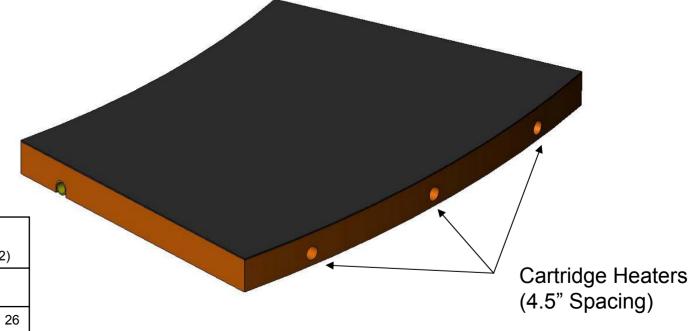
Temp Profile 3 Heater Simultaneous Heating and Cooling (900 W/M²K He cooling).



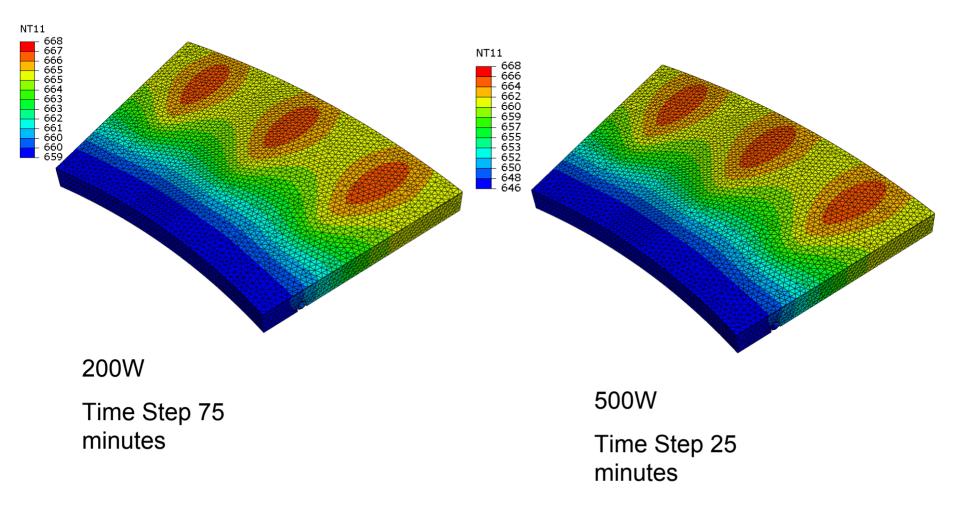
- Time Step 170 Minutes
- 400W Heating (105.25 mW/mm²)

- Time step 170 Minutes
- 500W Heating (131.6 mW/mm²)

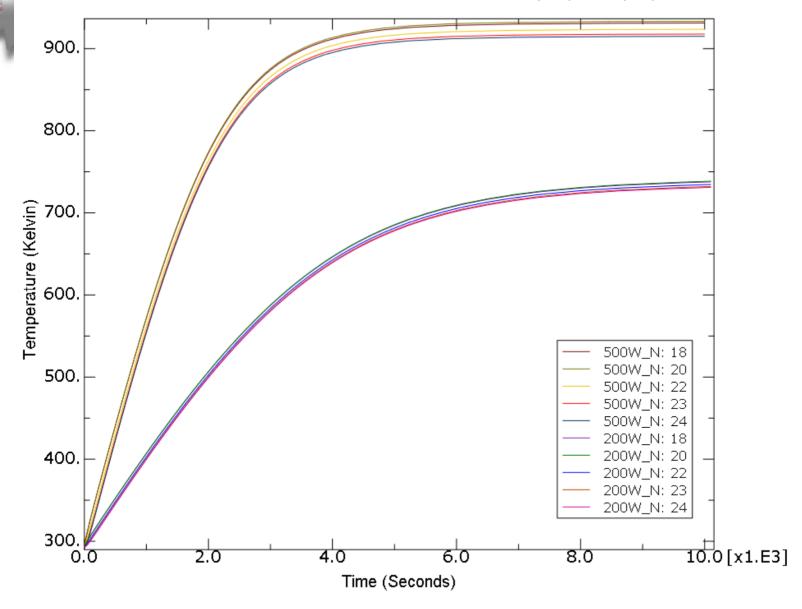


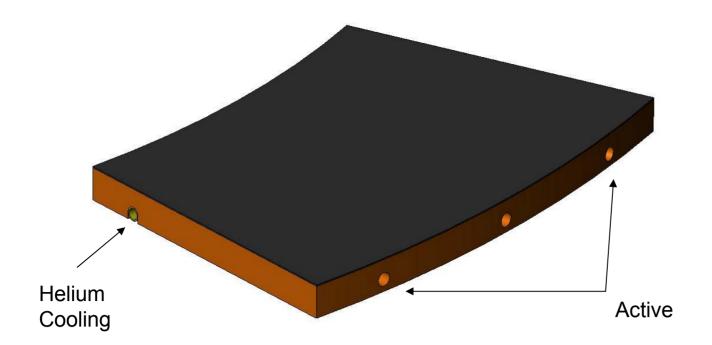


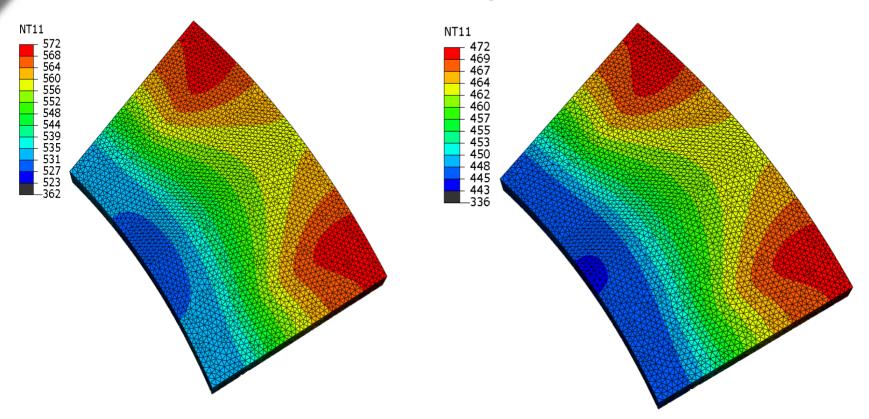
LLD Thermal Analysis Heating with Radiation Only



Heat Flux (mW/mm^2)					
26					
53					
79					
105					
132					

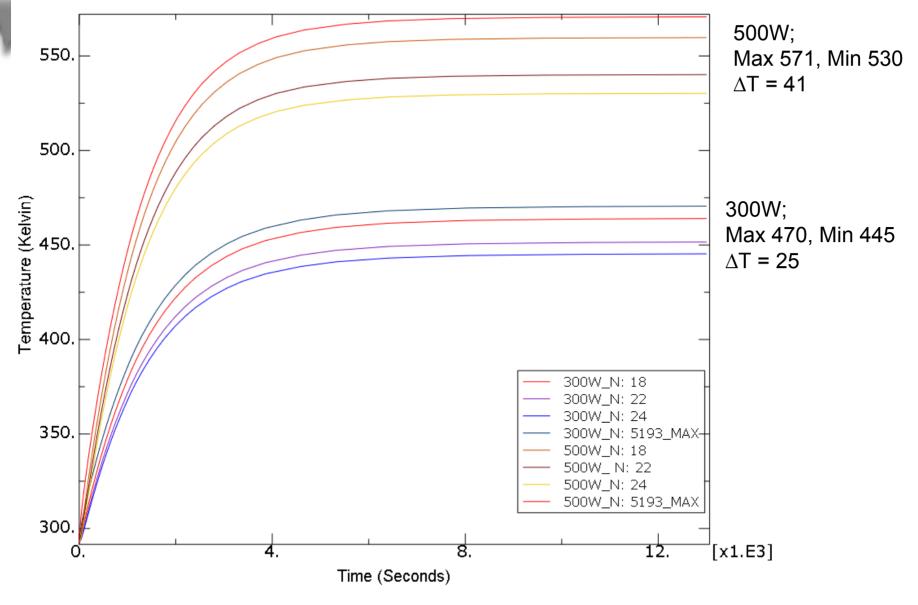

Temp Profile 3 Heater 200W Heating with Radiation only

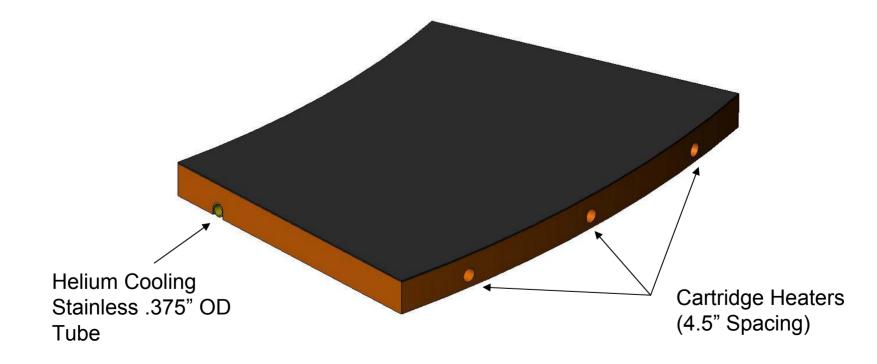

500W & 200W HEATING, RADIATION ONLY, e(Mo)=.2, e(Cu)=.3

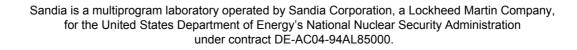

LLD Thermal Analysis Simultaneous Heating and Cooling 2 Heater Steady State.

Temp Profile 2 Heater Simultaneous Heating and Cooling

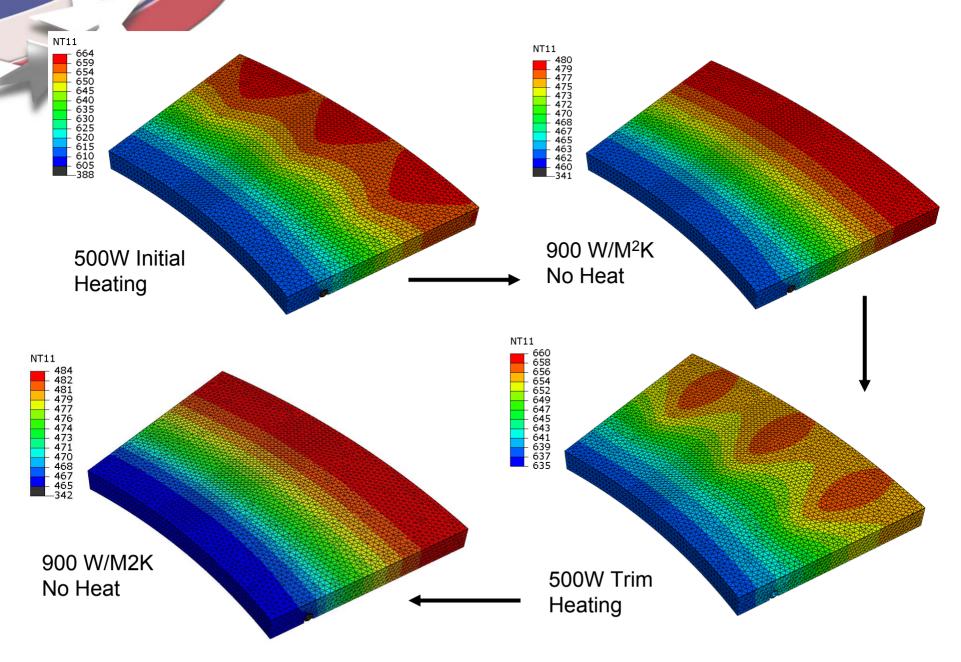
- Time Step 220 Minutes
- 500W Heating (131.6 mW/mm²)


- Time Step 220 Minutes
- 300W Heating (131.6 mW/mm²)

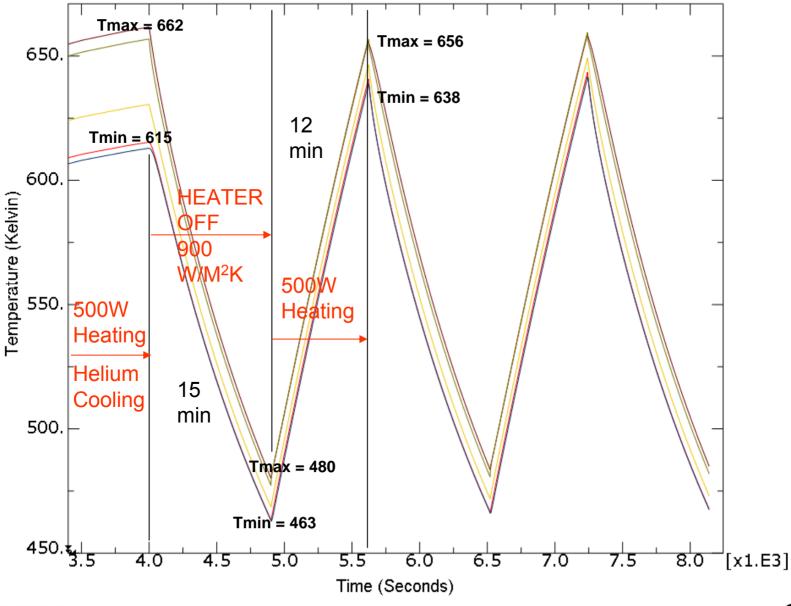

TEMPERATURE RESPONSE FOR 2 HEATERS WITH 900 W/M^2K He COOLING



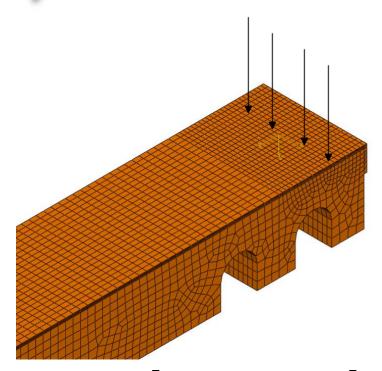
LLD Thermal Analysis Heating, Cooling and Trim Heating for Operational Cycle time of 10 minutes.



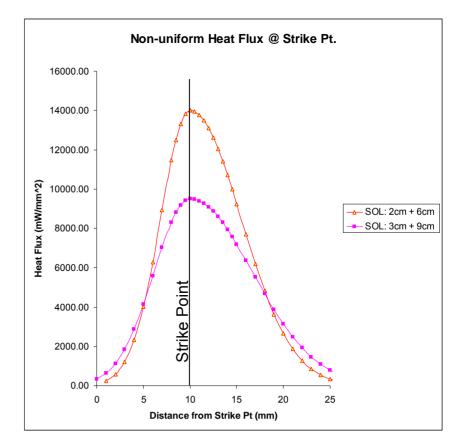
- 673K max allowable temperature for heat up
- 473 is target temperature for cool down.
- Cycle Time approximately 10 minutes between heat up and cool down.



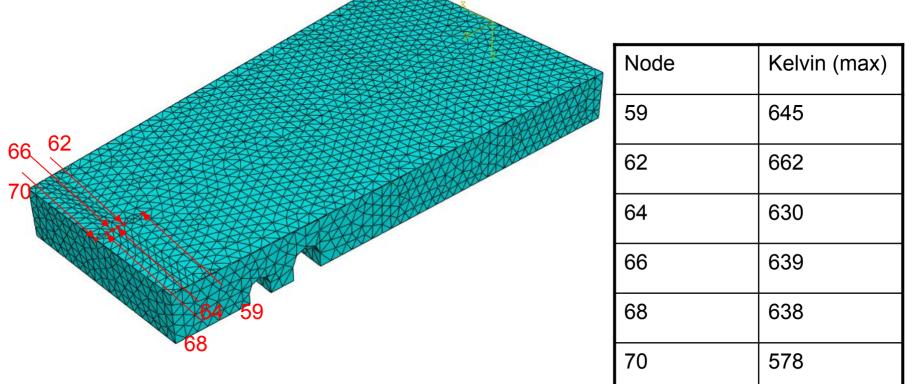
500W HEATING; He COOLDOWN NO HEAT; 500W TRIM HEATING

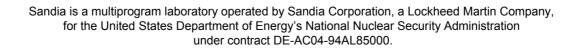

Cycle time Calculations for Heating and Cooling of LLD Time to heat and Cool Mass

			-
Area Cooling tube (M^2)	Heat Transfer Coeffecient W/M^2K	delta T	
0.006591	900	200	
mW/mm^2	Temp max	Temp min	
5.669E-11	673	293	
0.2			,
0.3			
Mo mW/mm^2	Cu mW/mm^2	Total Power out (W)	
1.76	2.64	319	
Mass (ss)	Mass (Kg)		
5.02E-05	12.39		
Cp(Cu) (J/MgK)	ΔT	Power loss (Watts)	Time (Sec)
3.90E+05	200	1505	63
815			
1181			
nutes	5.79	Kg	
	0.006591 mW/mm^2 5.669E-11 0.2 0.2 0.3 0.3 Mo mW/mm^2 1.76 Mass (ss) 5.02E-05 Cp(Cu) (J/MgK) 3.90E+05 815	0.006591 900 mW/mm^2 Temp max 5.669E-11 673 0.2 0.3 0.3 0.2 Mo mW/mm^2 Cu mW/mm^2 1.76 2.64 Mass (ss) Mass (Kg) 5.02E-05 12.39 Cp(Cu) (J/MgK) ΔT 3.90E+05 200 815 815	0.006591 900 200 mW/mm^2 Temp max Temp min 5.669E-11 673 293 0.2 0.3 293 0.2 0.3 700 Mo mW/mm^2 Cu mW/mm^2 Total Power out (W) 1.76 2.64 319 Mass (ss) Mass (Kg) 319 Cp(Cu) (J/MgK) ΔT Power loss (Watts) 3.90E+05 200 1505 815 815 1505



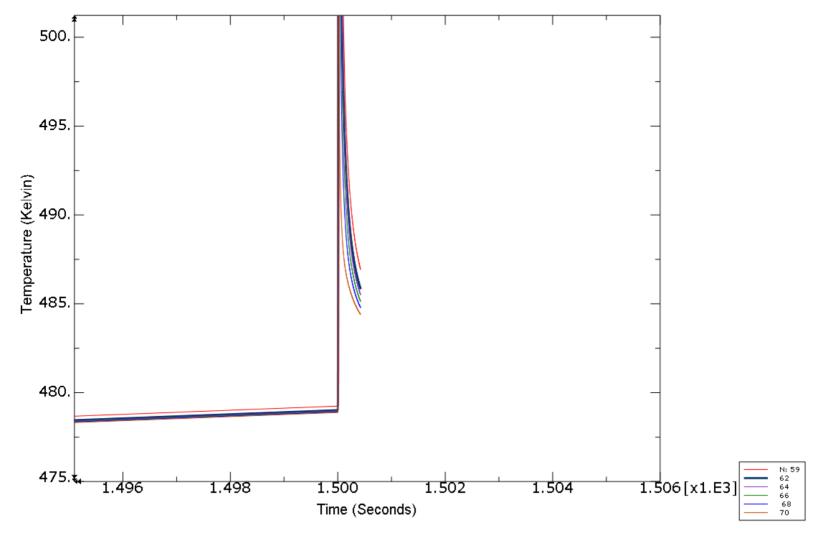
$$q_o \times \exp\left[-(x-x_o)^2/\lambda_q\right]$$

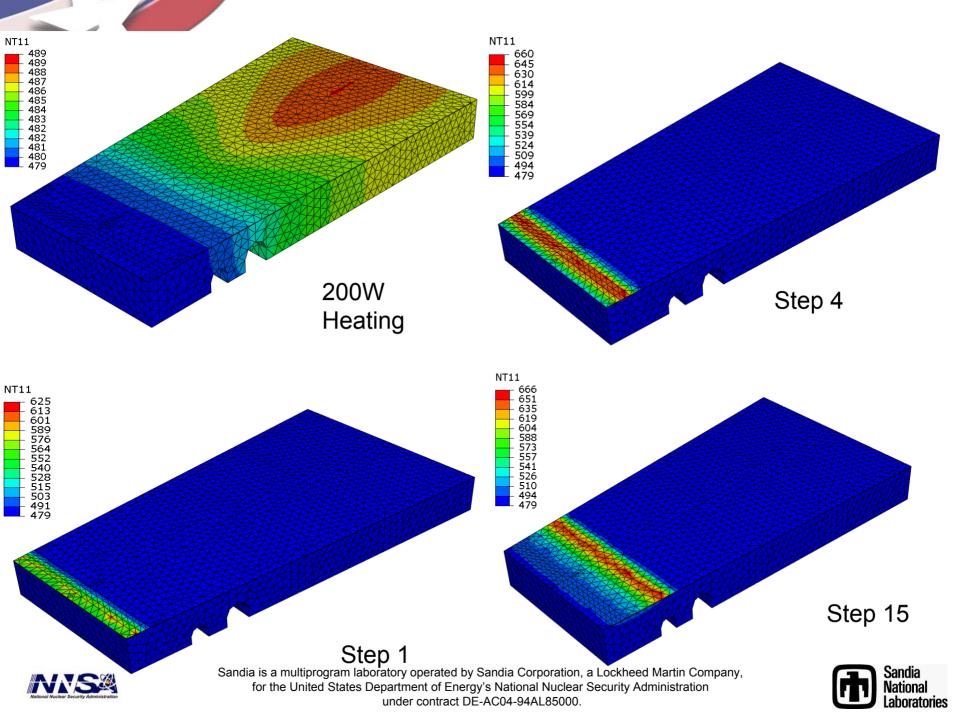

Where λ_q = a (x>0) and b (x<0) SOL: 2cm + 6cm; a=60 and b=20 SOL: 3cm + 9cm; a=90 and b=30

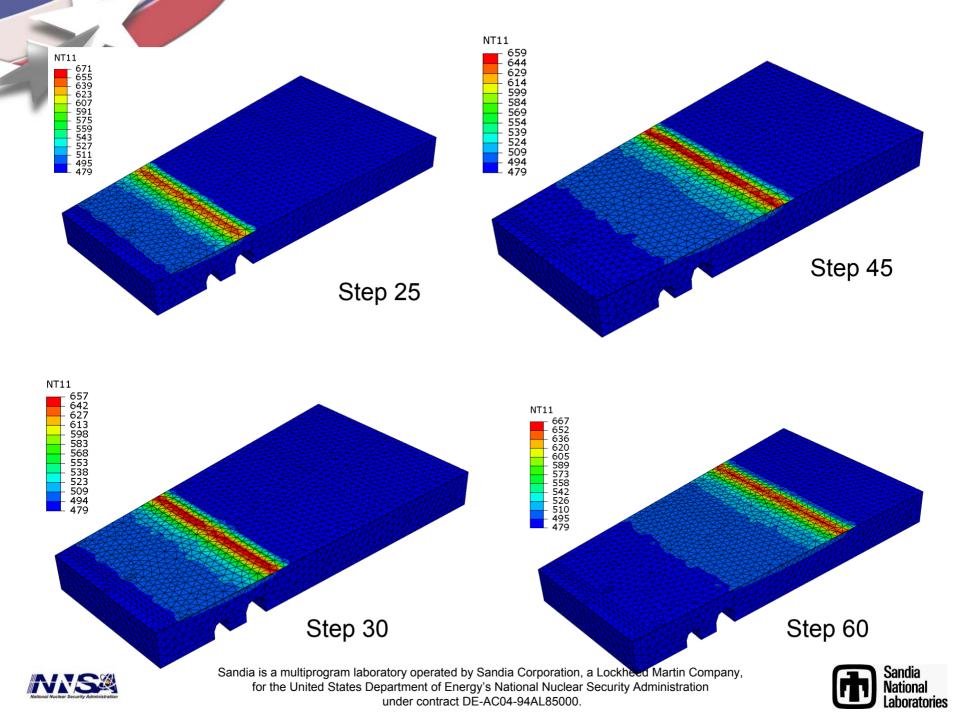


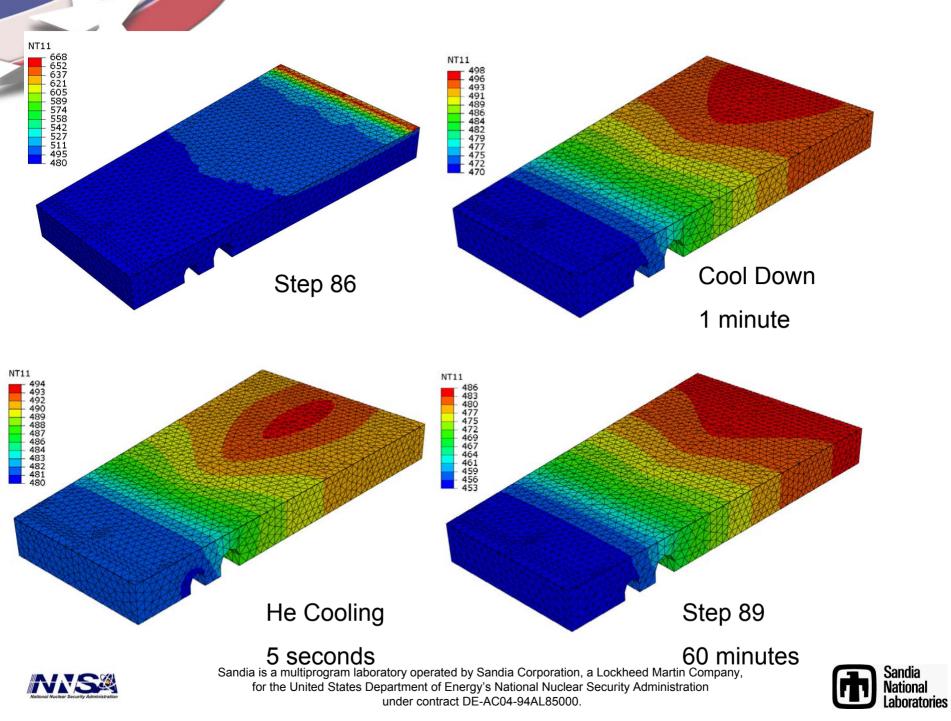
Strike Point Sweep Analysis Velocity Calculation to Keep Strike Point temp below 675 K

- Initial heating from 200W heater for 25 minutes
- Initial temperature at strike pt. 475 K
- Duration at strike pts. = .005 seconds Total time for sweep = .020 seconds
- $\Delta x = 2.5 \text{ mm}$ for a .43 second sweep across entire area.
- Total distance of sweep 215mm
- 500 mm/s




Strike Point Heating and Cooling by Radiation Only.


Strike Pt. Sweep with Initial Heating



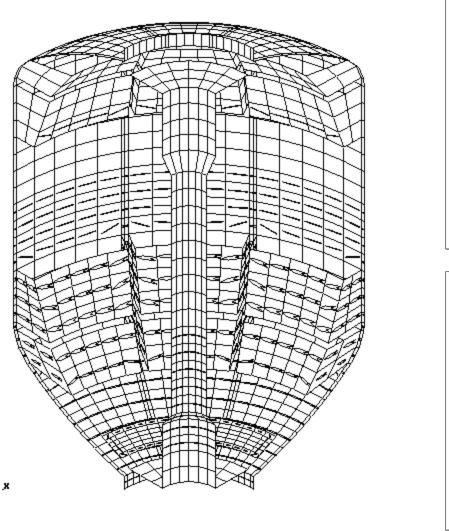
Electromagnetic Considerations

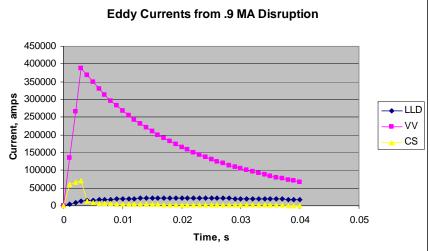
- CDR: Based on scale-up of Brooks analysis.
 - Now that we are more certain of the LLD geometry, calculations can be revisited.
- Z-forces are reacted by supports.
- CDR: Scale original Brooks loads by factor of ~2
 - Roughly double radial width of LLD
 - Fz on each curved edge is ~600lbf
 - Fz on each straight edge is ~700lbf
- New results from Brooks [next four slides]:
 - Fz on each curved edge is ~281lbf
 - Fz on each straight edge is ~490lbf
- Shoulder screws are the weakest part of support.
 - 736lbf shear (15ksi allowable)
 - Can make shoulder screws from Inconel 718 if necessary (~2x allowable)

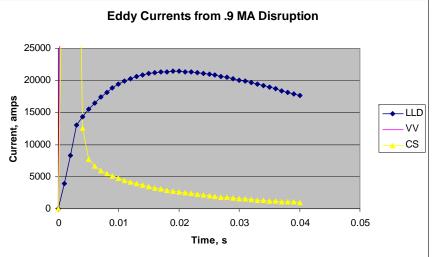
Liquid Lithium Divertor Eddy Current and Force Estimates Update [A. Brooks]

- 4 Toroidal Segments modeled
 - LLD Geometry updated Conical Shape
 - Repeat of analysis with VV, PP & CS
 - LLD assumed electrically floating (no loops with VV)
- Eddy Currents and Forces calculated for Shot 116066
 - Self consistent PF distribution extracted from shot data
- Normal Flux change thru LLD from Plasma Model estimated to be ~60 T/s for 3 ms
 - This compares to Stefan Gerhardt measurements of 25 T/s Normal and 200 T/s Tangent Field

Fields at LLD [A. Brooks]


Field at Li	ithium Diverto	r Before and	afte	r disruptio	n			
	Re: Shot#1160	66, time=.325s	3					
	from pfcalcx.f r	outine						
PF Coils C	Dnly							
	r	z	br		bz	Bnet	phi	
	0.65910	-1.60820		0.05151	-0.19314	0.19989	-0.47367	
	0.85910	-1.52940		0.04327	-0.20737	0.21184	-0.68190	-0.20823
Plasma O	nly							
	r	z	br		bz	Bnet	phi	
	0.65910	-1.60820		-0.12801	0.18773	0.22722	0.31104	
	0.85910	-1.52940		-0.17009	0.14686	0.22471	0.52896	0.21791
PF Coils+	Plasma							
	r	z	br		bz	Bnet	phi	
	0.65910	-1.60820		-0.07650	-0.00541	0.07669	-0.16263	
	0.85910	-1.52940		-0.12682	-0.06052	0.14052	-0.15294	0.00968
TF								
cur	-52752.4	amps						
Nturns/coil	3							
Ncoils	12							
Nturns	36							
NI	-1899086.4	amp-turns						
Rin	0.65913							
Rout	0.85913	m						
Bth in	-0.58	Т						
Bth out	-0.44	Т						


4/21/2008


Force Estimates [A. Brooks]

Force E	stimates										
Based on l	LD Only with	out VV/PP/C	S effects								
lmax	21405	amps	Spark .9 MA	Plasma	Model v	vith effe	ctive dB	/dt~60 T/s	for 3 ms		
	Running Lo	ad, Ib/in									
	Fr/I	Fth/I	Fz/I								
IR	23.6	0.0	6.3				4				
OR	-25.3	0.0									
0 deg	0.0	-24.5	-62.2			•					
90 deg	0.0	24.5	62.2				<u>→</u>	_			
								× ,			
									*	×	
	Net Load on	Edges, <mark>Ibs</mark>								``\	
	Fr	Fth	Fz								
IR	962	0	257							N N	
OR	-1347	0	-281							No.	
0 deg	0	-193	-490							\backslash	*
90 deg	0	193	490								
										4	. /
~Total	-384	0	-24							Ι.	
										*	
						٤.					\rightarrow
							6			_	

Spark Transient Eddy Currents [A. Brooks]

 $_{4/21/2008}$ Time = 3 ms

Current Buildup in LLD driven by VV/PP NEPA #1413; WP#1382 CS decays rapidly **Peak Current 21405 amps**

Cost and Schedule

- We want to install the LLD this outage.
- Major fabrication steps are:
 - Order copper and stainless steel plates.
 - Braze copper/stainless plates.
 - Flatten and machine plates to final thickness.
 - Bend and machine plates.
 - Braze cooling tubes into plates.
 - Plasma spray Mo on plates
 - Install heaters/thermocouples/wires/supports and vacuum prep.
- 200 replacement tiles need to be procured.
- Much of the hardware cost is in Sandia scope.
- Cost estimate spreadsheet shows \$870K total, \$370k Component Fabrication
 - →\$500k PPPL cost

		Start	Finish					2008				
	Activity Name	Date	Date	April	Мау	June	July	August	September	October	November	December
1	Finalize drawings	4/23/08	5/6/08									
2	Establish vendor lists for braze & fab	4/23/08	5/6/08									
3	Order large SS/Cu plates	5/7/08	5/30/08			2						
4	RFQs for plate brazing	5/7/08	5/30/08			2						
5	Plate brazing	6/2/08	6/27/08			\rightarrow						
6	RFQs for plate bending/machining	6/2/08	6/27/08			\rightarrow						
7	Plate bending/machining	6/30/08	8/15/08			Ć		\rightarrow				
8	Cooling tube brazing	8/18/08	8/29/08						>			
9	Mo plasma spraying	9/1/08	9/26/08						$\diamond \qquad \diamond \qquad \diamond \qquad \qquad \\$			
10	Install heaters etc. & vacuum prep	9/29/08	10/31/08								\$	
11	RFQ tiles	5/26/08	6/13/08		×	\diamond						
12	Order tiles	6/16/08	9/12/08			\diamond			→			
13	Vacuum bake tiles	9/15/08	10/31/08						\		\$	
14	Order Misc. Hardware	6/16/08	9/12/08			\diamond			→			
15	Install LLD segments	11/3/08	11/28/08								\diamond	
16	Install tiles	12/1/08	12/5/08								<	×
				April	Мау	June	July	August	September	October	November	December

NSTX LLD-1

														FY08 RATE	ES-9/13/07
	EREM	EEEM	ECEM	EAEM	ERSB	EESB	ERTB	EETB	EADM	EMSB	TRAVEL	STKRM	M&S	Unloaded	Loaded
Conceptual Design	0	0	0	300	0	0	0	0	0	0	\$0	\$0	\$0	\$29,379	\$58,213
Prepare Conceptual Design				300										\$29,379	\$58,213
Task #2														\$0	\$0
Task #3														\$0	\$0
Task #4														\$0	\$0
Task #5														\$0	\$0
Task #6														\$0	\$0
Task #7														\$0	\$0
Task #8														\$0	\$0
	EREM	EEEM	ECEM	EAEM	ERSB	EESB	ERTB	EETB	EADM	EMSB	TRAVEL	STKRM	M&S	Unloaded	Loaded
L-245 Wetting Tests	0	0	0	0	0	0	0	200	0	200	\$0	\$0	\$0	\$21,118	\$40,610
Chamber setup / initial tests								200		200				\$21,118	\$40,610
Task #2														\$0	\$0
Task #3														\$0	\$0
Task #4														\$0	\$0
Task #5														\$0	\$0
Task #6														\$0	\$0
Task #7														\$0	\$0
Task #8														\$0	\$0
	EREM	EEEM	ECEM	EAEM	ERSB	EESB	ERTB	EETB	EADM	EMSB	TRAVEL	STKRM	M&S	Unloaded	Loaded
Design Prototyping and testing	0	0	0	60	0	0	0	40	0	120	\$0	\$300	\$2,000	\$17,203	\$32,021
Design and fab prototypes	;			40						80		\$300	\$2,000	\$11,021	\$20,018
PPPL Prototype Tests				20				40		40				\$6,182	\$12,003
Task #3														\$0	\$0
Task #4														\$0	\$0
Task #5														\$0	\$0
Task #6														\$0	\$0
Task #7														\$0	\$0
Task #8															
														\$0	\$0
	EREM		ECEM	EAEM	ERSB	EESB	ERTB	EETB	EADM		TRAVEL	STKRM	M&S	Unloaded	Loaded
Final Design		EEEM 40	ECEM 0	160	ERSB 0	EESB 0	ERTB 0	eetb 0	320	EMSB 0	TRAVEL \$0	STKRM \$0	M&S \$0	Unloaded \$43,683	Loaded \$86,257
	EREM 0	40												Unloaded \$43,683 \$39,874	Loaded \$86,257 \$79,007
Final Design	EREM 0			160					320					Unloaded \$43,683 \$39,874 \$3,809	Loaded \$86,257 \$79,007 \$7,250
Final Design Mechanical Engineering Design	EREM 0	40		160					320					Unloaded \$43,683 \$39,874 \$3,809 \$0	Loaded \$86,257 \$79,007 \$7,250 \$0
Final Design Mechanical Engineering Design Controls Interface Engineering	EREM 0	40		160					320					Unloaded \$43,683 \$39,874 \$3,809 \$0 \$0	Loaded \$86,257 \$79,007 \$7,250 \$0 \$0
Final Design Mechanical Engineering Design Controls Interface Engineering Task #3	EREM 0	40		160					320					Unloaded \$43,683 \$39,874 \$3,809 \$0 \$0 \$0 \$0	Loaded \$86,257 \$79,007 \$7,250 \$0 \$0 \$0 \$0
Final Design Mechanical Engineering Design Controls Interface Engineering Task #3 Task #4	EREM 0	40		160					320					Unloaded \$43,683 \$39,874 \$3,809 \$0 \$0 \$0 \$0 \$0 \$0	Loaded \$86,257 \$79,007 \$7,250 \$0 \$0 \$0 \$0 \$0
Final Design Mechanical Engineering Design Controls Interface Engineering Task #3 Task #4 Task #5	EREM 0	40		160					320					Unloaded \$43,683 \$39,874 \$3,809 \$0 \$0 \$0 \$0	Loaded \$86,257 \$79,007 \$7,250 \$0 \$0 \$0 \$0

NS	ТΧ	LL	.D-1
----	----	----	------

														FY08 RATE	S-9/13/07
	EREM	EEEM	ECEM	EAEM	ERSB	EESB	ERTB	EETB	EADM	EMSB	TRAVEL	STKRM	M&S	Unloaded	Loaded
Misc. Hardware Purchases	0	0	0	0	0	0	0	0	0	0	\$0	\$0	\$23,000	\$23,000	\$29,463
Misc. hardware	-										* -	* *	\$4,000	\$4,000	\$5,124
Electrical Feedthroughs (16 20-pin)													\$8,000	\$8,000	\$10,248
Gas Feedghroughs (8 single tube mini cf)													\$1,000	\$1,000	\$1,281
Ceramic Breaks (16 mini cf)													\$4,000	\$4,000	\$5,124
													\$4,000 \$4,000	\$4,000	\$5,124
Ceramic coating for washers & misc. components															
2.75" cross													\$2,000	\$2,000	\$2,562
Task #7														\$0	\$0
Task #8														\$0	\$0
	EREM	EEEM	ECEM	EAEM	ERSB	EESB	ERTB	EETB	EADM	EMSB	TRAVEL	STKRM	M&S	Unloaded	Loaded
Assembly and Installation	0	0	0	200	0	520	0	0	0	360	\$0	\$0	\$0	\$73,933	\$142,994
Engineering Support				80										\$7,834	\$15,523
Assembly Prep [includes brazing and welding at PPPL]				40						240				\$18,329	\$35,692
Installation				80						2.0				\$7,834	\$15,523
Install 2 racks				00		360								\$22,658	\$43,124
Install feedthroughs						500				120				\$7,206	\$13,965
-						160				120				\$10,070	\$19,166
Install cables						100									
Task #7														\$0 \$0	\$0
Task #8														\$0	\$0
	EREM	EEEM	ECEM	EAEM	ERSB	EESB	ERTB	EETB	EADM	EMSB	TRAVEL	STKRM	M&S	Unloaded	Loaded
Component Fabrication (Sandia)	0	0	0	0	0	0	0	0	0	0	\$0	\$0	\$288,000	\$288,000	\$368,928
Order raw material for six plates	;												\$19,000	\$19,000	\$24,339
Order heaters and thermocouples													\$4,000	\$4,000	\$5,124
Brazing/HIP bonding of six plates													\$30,000	\$30,000	\$38,430
Bending/machining of six plates													\$50,000	\$50,000	\$64,050
Fab cooling tubes (six sets)													\$10,000	\$10,000	\$12,810
Braze plates / cooling tubes													\$5,000	\$5,000	\$6,405
Plasma spray Mo													\$70,000	\$70,000	\$89,670
													\$20,000	\$20,000	\$25,620
Fabricate supports Fabricate graphite tiles													\$20,000 \$80,000	\$20,000	\$102,480
													+,	+,	<i><i><i></i></i></i>
	EREM		ECEM	EAEM	ERSB	EESB	ERTB		EADM		TRAVEL	STKRM	M&S	Unloaded	Loaded
PPPL Mech. Fab. and Elect. Support	0	480	0	200	0	0	0	0	48	0	\$0	\$0	\$0	\$68,927	\$132,999
Control Interface Engineering		480												\$45,710	\$86,997
Procurement tracking - mechanical components				200					48					\$23,217	\$46,002
Task #3														\$0	\$0
														\$0	\$0
Task #4														ψŪ	+ -
Task #4 Task #5														\$0 \$0	\$0
Task #5														\$0 \$0	\$0
Task #5 Task #6														\$0	\$0 \$0
Task #5 Task #6 Task #7													Г	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0
Task #5 Task #6 Task #7												OTVD		\$0 \$0 \$0 \$0 FY08 RATE	\$0 \$0 \$0 \$0
Task #5 Task #6 Task #7		EEEM 520	ECEM 0	EAEM 920	ERSB 0	EESB 520	ERTB	ЕЕТВ 240	EADM 368	EMSB 680	TRAVEL \$0	STKRM \$300		\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0

			FY08 RATES-9/13/07	**DEMOG	**Base	**Loaded DEMOG
			E A Div Engineer	EAEM	\$97.93	\$194.04 LEAEM
			Computer Div Engineer	ECEM	\$80.24	\$155.50 LECEM
			Computer Div SL&S(B)	ECSB	\$51.88	\$100.54 LECSM
ł	**		Computer DivTech	ECTB	\$39.30	\$76.16 LECTB
	no	ote that all SM demographics	EE Div Engineer	EEEM	\$95.23	\$181.24 LEEEM
	ar	re costed at S(B) labor rates	EE Div SL&S(B)	EESB	\$62.94	\$119.79 LEESM
			EE DivTech	EETB	\$45.54	\$86.67 LEETB
_			RF Engineer	EREM	\$95.23	\$181.24 LEREM
			RF SL&S(B)	ERSB	\$62.94	\$119.79 LERSM
Benefits	rates:		RF Tech	ERTB	\$45.54	\$86.67 LERTB
3	33% fo	r regular employees	ME Engineer	EMEM	\$86.66	\$167.95 LEMEM
	15% fo	r hourly employees	ME Machinist	EMNB	\$60.05	\$116.38 LEMNB
			ME SL&S(B)	EMSB	\$60.05	\$116.38 LEMSM
MHX	2007	28.13 %	ME Tech	EMTB	\$43.37	\$84.05 LEMTB
Site	2007	73.81 %	Drafting SL&S(B)	EADM	\$75.64	\$149.88 LEADM
Offsite	2007	26.00 %	M&S Purchases	MS(41)	M&S \$\$	1.281 MSGA
			Stockroom Withdrawals	STKR(37)	STKR\$\$	1.281 SRGA
			Travel	TVL(35)	TVL\$\$	1.209 TVLGA
			EA Mechanical Div Burden	EABUR	14.00%	
			EC Comp Sys Div Burden	ECBUR	11.50%	
			EE Electrical Eng Div Burden	EEBUR	9.50%	
		EM	Fab, Ops & Maint Div Burden	EMBUR	11.50%	
			Operating G&A	G_A	73.81%	(site burden x G&A)
			Operating G&A: M&S	G_A_M	28.13%	(no G&A if \$=>\$ <mark>250</mark> k)
		E	Escalation Multiplier from FY08	ESC	1.0000	OK 9/13/07
				-		

Summary

- We have a design for a practical LLD.
- Detailed analyses indicate that performance will be adequate.
- We need to work towards having major procurements in place.