

(Preliminary assessment of) Recycling and particle fluxes in NSTX

V. A. Soukhanovskii¹

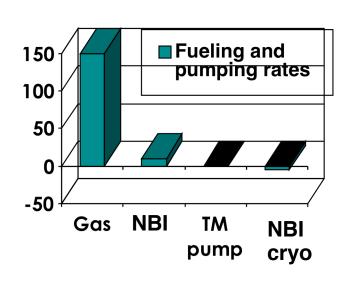
Acknowledgements: M. G. Bell², C. E. Bush², R. Kaita³, H. W. Kugel³, R. Maingi², J. Menard³, R. Raman⁴, A. L. Roquemore³

¹ Lawrence Livermore National Laboratory, Livermore, CA ² Princeton Plasma Physics Laboratory, Princeton, NJ ³ Oak Ridge National Laboratory, Oak Ridge, TN ⁴ University of Washington, Seattle, WA

NSTX Liquid Lithium Divertor Design Meeting 24 April 2007 Princeton, NJ

Motivation

Based on measurements available in NSTX...


- Assess poloidal distribution of fueling sources
- Assess relative role of lower, upper divertor and "main chamber" recycling
- Provide input in liquid lithium divertor (LLD) module design
 - ✓ Input for 0D modeling
 - \checkmark Assess optimal LLD module location and size
 - \checkmark Assess expected impact of LLD on particle inventory
- Apply developed analysis to FY2006 LITER lithium evaporator experiments
 - ✓ Analyze ion source change in LITER experiments
 - \checkmark Assess particle balance

Large effort!

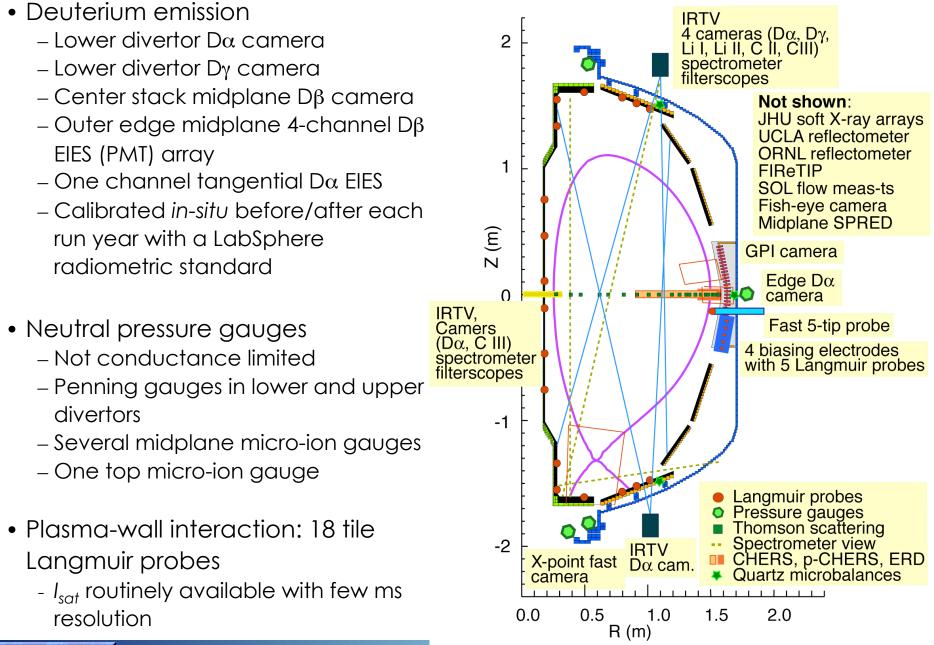
Main fueling source and sink in NSTX are walls (including divertor)

NSTX fueling source

- Gas injection: low field side (LFS, top + side) and high field side (HFS, midplane + shoulder), divertor. D₂, He, injected at S = 20 - 100 Torr I /s.
- Neutral beam injection system: three beams, 60 - 100 keV, 6-7 MW, fueling rate: S < 4 Torr I / s
- Supersonic gas injection S = 30 130 Torr I / s
- Wall (and divertor)

NSTX pumping

- Turbomolecular pump (S = 3400 I / s)
- NBI cryopump (S = 50000 I / s, in NBI-heated plasmas only)
- Conditioned walls


PFC

- ATJ graphite tiles on divertor and passive plates
- ATJ and CFC tiles on center stack

Particle fluxes measured in NSTX with spectroscopy, probes and pressure gauges

wrence Livermore

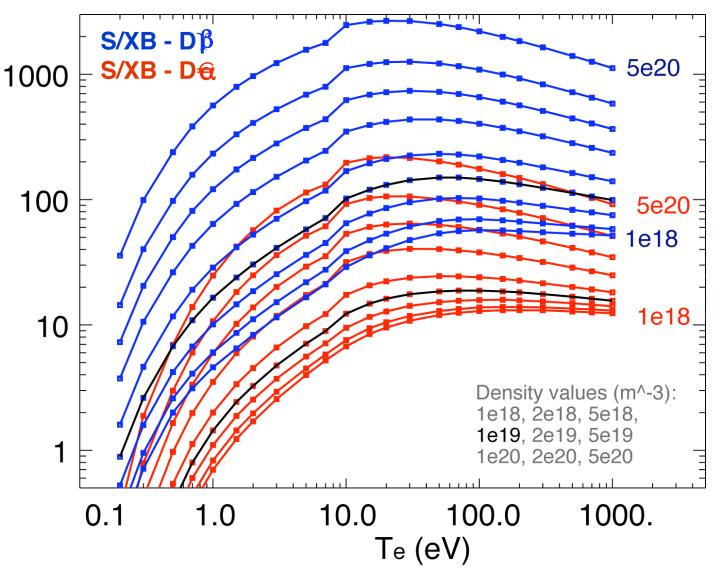
S/XB ratio technique is used to infer ionization source from spectroscopic $D\alpha$ -D β measurements

$$\Gamma_{ph} = \int_{x_1}^{x_2} n_i \; n_e \; X \; B \; dx$$

- Technique originally developed by L. C. Johnson & E. Hinnov, and further by A. Kallenbach
- Used for deuterium and impurities

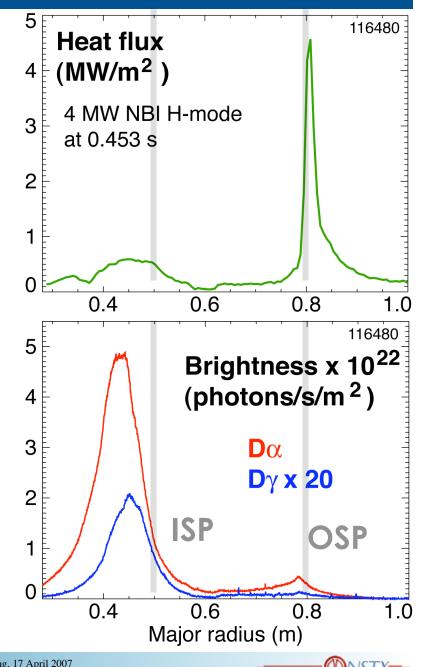
$$\frac{\partial n_i}{\partial t} + \frac{\partial}{\partial x}(v_i \ n_i) = S^{i-1} \ n_e \ n_{i-1} - S^i \ n_e \ n_i$$

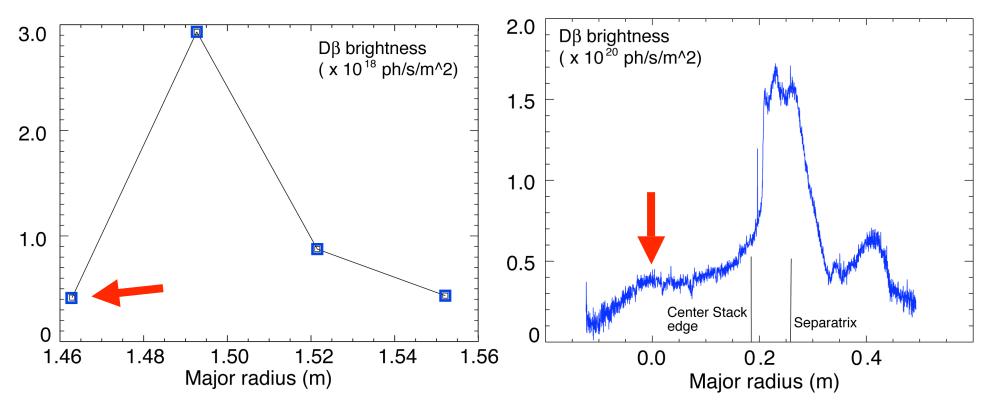
$$\Gamma_{ph} = -\frac{X B}{S^i} \left(v_i \ n_i |_{x_1}^{x_2} - \int_{x_1}^{x_2} S^{i-1} n_{i-1} \ n_e \ dx + \int_{x_1}^{x_2} \frac{\partial n_i}{\partial t} \ dx \right)$$


$$\Gamma_i = -v_i \, n_i |_{x_1}^{x_2} + \int_{x_1}^{x_2} S^{i-1} n_{i-1} \, n_e \, dx$$

$$\Gamma_i = \frac{S}{X B} \Gamma_{ph}$$

- 1D viewing geometry
- x₁-recycling / erosion boundary, x₂ - detector location
- Recombination neglected
- Excitation and ionization occur in the same volume
- Steady-state condition


S/XB ratio technique is used to infer ionization source from spectroscopic $D\alpha$ - $D\beta$ measurements


• From ADAS database (courtesy of ORNL Controlled Fusion Atomic Data Center (CFADC))

Lower divertor heat flux and deuterium emission profiles

- Reflections in outer divertor small ~ 10 %, in inner divertor higher
- Outer strike point attached
 use S/XB ratio of 20 ionizations / Dα photon
- Inner strike point detached, use S/XB ratio of 1-2 ionizations / Dα photon
- Private flux region fluxes not considered
- Future work: use Dγ profile to infer inner divertor sink using recombinations / Dγ photon

Midplane center stack recycling is much higher than outer midplane edge recycling

- \bullet Outer SOL D β EIES array
 - Too few points for Abel inversion, typically all outside separatrix
 - Take innermost point and use as "radial" view
- \bullet Inner SOL D β profile from 1D CCD camera
 - Inversion difficult due to reflections / poor background coverage
 - No $T_{\rm e}$ and $n_{\rm e}$ measurements in inner SOL
 - Take R=0 value for "radial" view

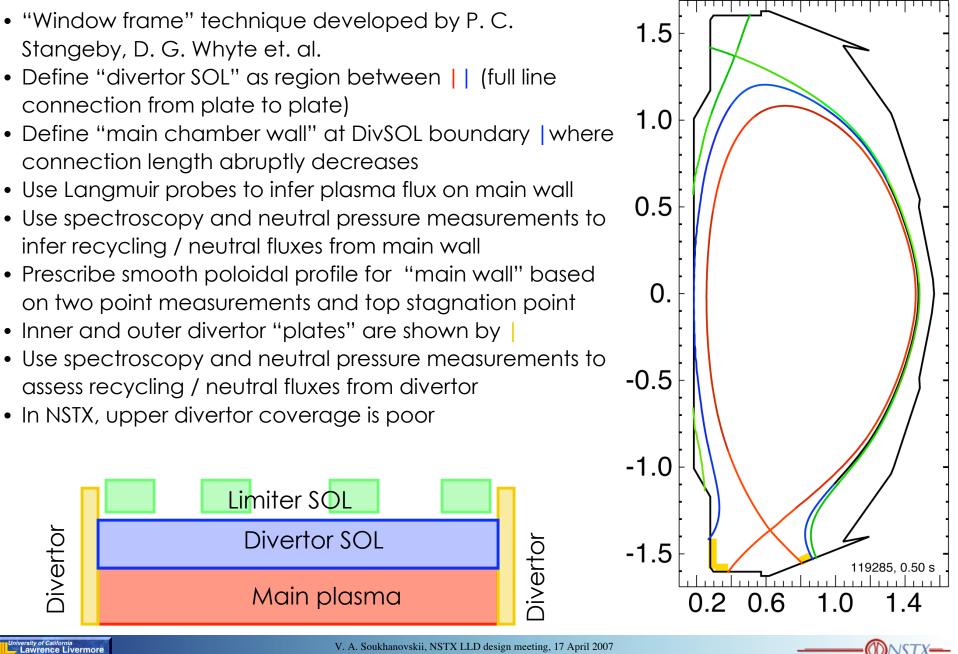
Atomic and molecular fluxes are inferred from neutral pressure measurements

$$\Gamma_{D_2} = \frac{1}{4} n_{D_2} \bar{v} \qquad \bar{v} = \sqrt{\frac{8kT}{\pi m}} \qquad P = n \, kT$$
$$\Gamma_D = 2 \times \frac{1}{2} \times \Gamma_{D_2} = \frac{1}{4} \frac{P}{kT} \sqrt{\frac{8kT}{\pi m}}$$

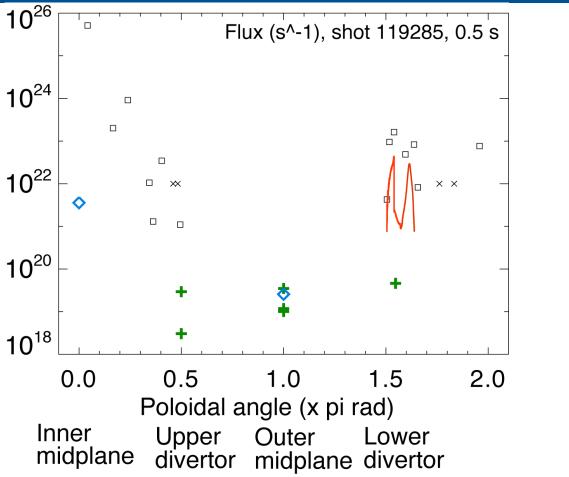
- "Standard" way to estimate molecular / atomic fluxes from pressure neutral measurements
- Might be about factor of 2-3 overestimated (from MC simulations and / or kinetic simulations)
- Typical midplane pressure P < 0.1 mTorr, lower divertor P < 1 mTorr

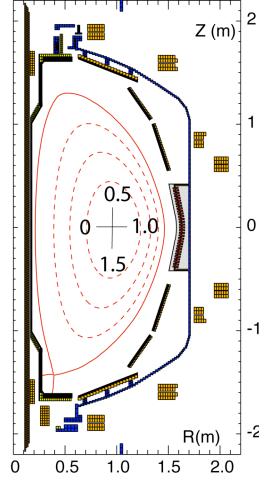
Plasma ion out-flux is inferred from tile Langmuir probes

• I_{sat} data available for 2005 and 2006 shots


$$j_{sat} = \frac{I_{sat}}{A_{pr}\sin\alpha} \qquad \Gamma_i = j_{sat}/e$$

- Tile Langmuir probes are flush-mounted
- Main computational effort is to calculate α 's accurately
- For very shallow angles ($\alpha < 1-2^{\circ}$) will use Gunn's probe sheath expansion model
- Inferred fluxes will be used to assess main wall flux according to the "window frame" technique





Elements of "window frame" technique used for particle flux analysis in NSTX

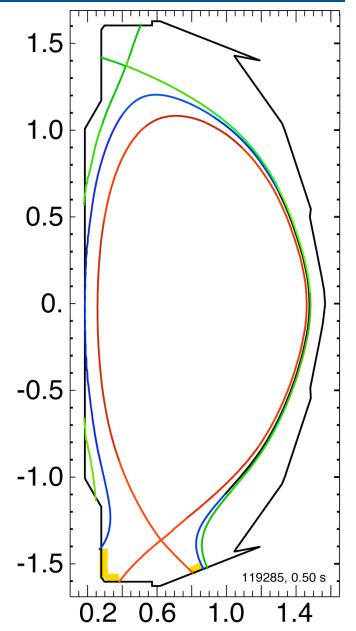
Preliminary result - poloidal distribution of particle fluxes

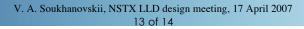
- Langmuir probe uncorrected j_{sat} shown (black squares)
- Neutral pressure green crosses
- Midplane D β measurements blue diamonds, Divertor D α red trace

V. A. Soukhanovskii, NSTX LLD design meeting, 17 April 2007 12 of 14

Preliminary results for shot 119285, at 0.3 s and at 0.5 s

MPTS line average density: 3.4e+19


total inner div source is:1.35e+22total outer div source is:8.18e+21total outer MP source is:7.59e+20total inner MP source is:3.57e+21


MPTS line density: 5.2e+19

Inner div source is: 1.13e+22 total outer div source is: 1.28e+22 total outer MP source is: 6.28e+20 total inner MP source is: 4.45e+21

Questions:

- Is outer divertor SOL in linear regime?
- Inner divertor source is strong true?

Preliminary conclusions and future work

- In a low-triangularity low-elongation shot (drsep \sim -2.0 cm)
 - ✓ Lower divertor appears to be a dominant ionization source (x 10) over "main wall" source
 - ✓ Upper divertor does not appear to be a significant ionization source

✓ Results are preliminary

- ✓ Implications for LLD to be assessed numerically, but looks like LLD should be where outer divertor SOL intersects the divertor plate
- Future work:
 - Check and clean up calculations
 - Analyze high κ, δ shots
 - Compare with particle balance calculations (TRANSP?)
 - Compare with edge modeling (UEDGE / DEGAS)

