

Recycling measurements using hydrogen (deuterium) Lyman Alpha line and AXUV diodes

V. A. Soukhanovskii

Lawrence Livermore National Laboratory, Livermore, CA

Acknowledgements: R. Kaita^a, A. L. Roquemore^a, K. Tritz^b

^aPrinceton Plasma Physics Laboratory, Princeton, NJ ^bThe Johns Hopkins University, Baltimore, MD

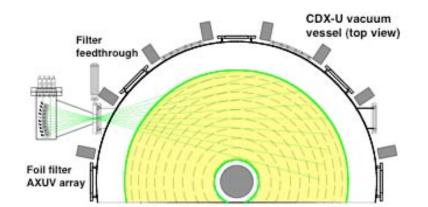
> LTX Meeting Princeton, NJ 15 August 2006

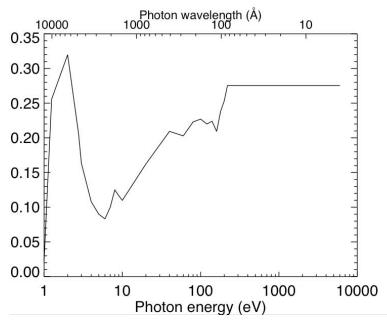
Recycling measurements background

- Recycling is the dominant (*) source of fueling in present day plasma fusion devices (* with some exceptions)
- Recycling is usually measured spectroscopically using atomic
 H (D) line emission
- Simple measurements can be done with
 - spectrometers
 - detectors with narrow bandpass interference filters
- Since recycling is localized to the surface plasma layer, line integrated measurements are usually not contaminated by main plasma emission
- However, if the surface is reflecting, measurements are hard to interpret

Spectroscopic background

- Balmer alpha line $H_{\alpha}(D_{\alpha})$ (3-2) is most commonly used
 - λ =656.3 nm (656.1 nm) it's in the visible range
 - ...where many optical detectors (CCDs, PMTs, silicon diodes, APDs, ...) have high efficiency
 - However, PFC surface reflections are a problem (very high!)
- Balmer beta line $H_{\beta}(D_{\beta})$ (4-2) is a good choice
 - λ =486.1 nm (486.0 nm) it's also in the visible range
 - ...where many optical detectors have *fairly high* efficiency
 - but: about x10 less intensity than $H_{\alpha}(D_{\alpha})$ intensity
 - and PFC reflections are still (but less of) a problem
- Higher level transitions (5-2, 4-3) are weak but can be considered
- Lyman alpha line Ly_{α} (2–1) is also a good choice
 - λ =121.6 nm in the Vacuum Ultraviolet (VUV) wavelength region
 - very bright resonant transition!
 - but: need special VUV detectors , filters and windows
 - normal reflections are weak from common PFC materials (graphite, CFC, blackened SS, etc)

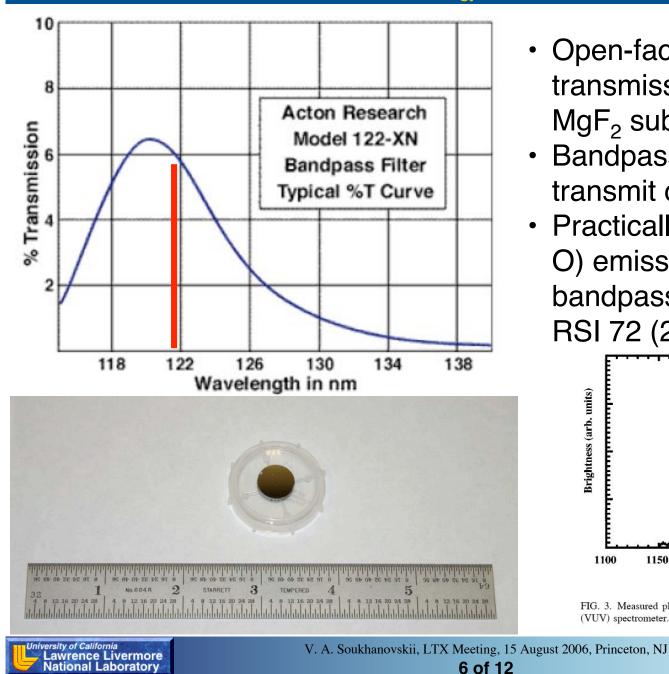




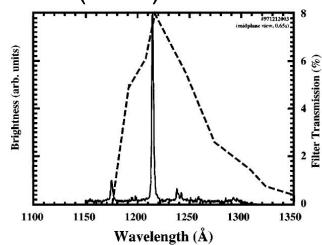
AXUV diode array diagnostic on CDX-U

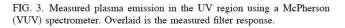
- AXUV diode is an *absolute* radiometric reference if properly used. Manufactured by International Radiation Detectors http://www.ird-inc.com/
- AXUV arrays developed by JHU Plasma Spectroscopy Group in collaboration with PPPL for CDX-U and NSTX spherical tori
 - CDX-U: RSI 72 (2001) 737; PPCF 44 (2002) 2339; RSI 72 (2001) 915
 - NSTX: RSI 70 (1999) 572
- AXUV radiometer array operated on CDX-U from 1999 to 2006
 - Used for radiated power measurements
 - Used for plasma position and equilibrium estimates
 - Used for midplane impurity profile measurements in 1999-2000 with NSTX amplifiers and Ti / Be filters
- Many other plasma devices have built and used AXUV diode arrays (Alcator C-Mod, DIII-D, TCV, CHS, T-10, T-11M, LHD - ask me for the references)

LADA diagnostic used on NSTX in 2006

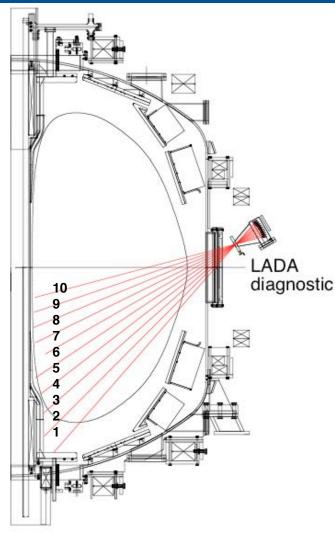

Ten AXUV diodes on stand-offs made from DuPont Vespel polyimide material

- LADA means Lyman Alpha Diode Array
- Upgraded CDX-U AXUV array to all UHVcompatible materials
- Replaced pinhole apertures
- Mounted ARC Ly $_{\alpha}$ 1/2" diameter filter purchased by LLNL
- Three apertures: one small and one large for radiometry, Ly_{α} filter for recycling measurements

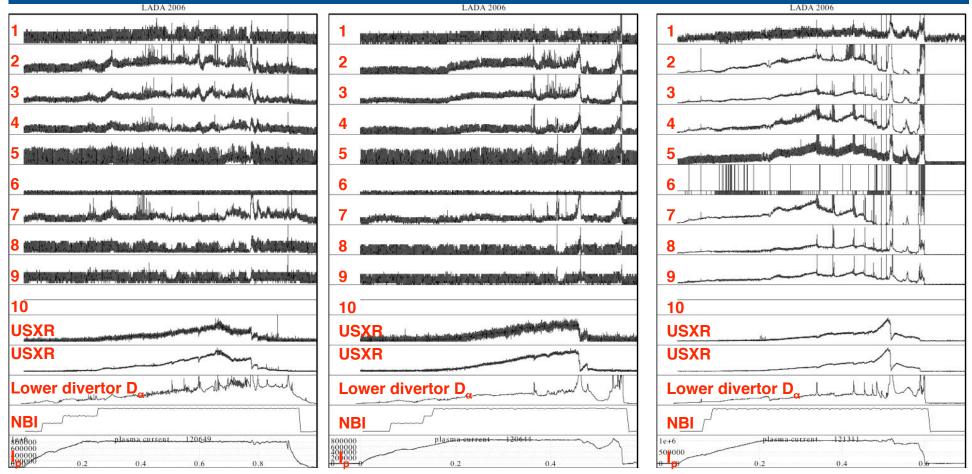

Front flange with vacuum feedthrough and aperture/filter slider



ARC (Acton Research Corp.) bandpass filter enables VUV Ly_{α} emission filtering



- Open-faced multilayer transmission filter mounted on MgF₂ substrate
- Bandpass is narrow enough to transmit only Ly_{α} light
- Practically no impurity (Li, C, • O) emission lines within bandpass (e.g. Boivin et. al. RSI 72 (2001) 961


LADA diagnostic on NSTX monitored recycling from lower inner wall and inner divertor regions

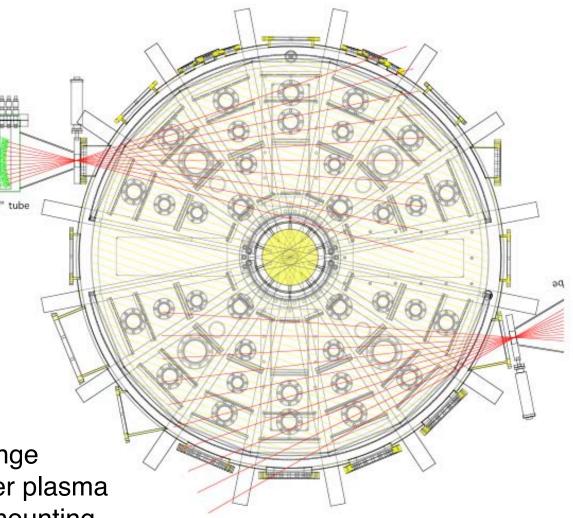
- Installed on Bay J midplane port in mid-May 2006
- Operated for about one month
- Used ten CAMAC differential amplifiers provided by CDX-U
- Used ten channel PC-based DAQ system provided by JHU
- Channel 1 was vigneted by in-vessel hardware
- Otherwise collected good data (examples on next page)

LADA diagnostic on NSTX operated in Ly_{α} and radiometer mode

 Ly_{α} filter mode

 Ly_{α} filter mode

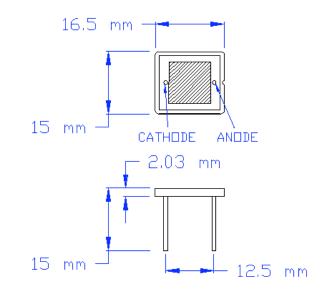
Radiometer mode (no filter)

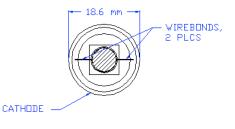

18

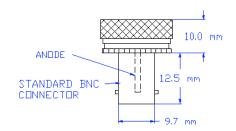
V. A. Soukhanovskii, LTX Meeting, 15 August 2006, Princeton, NJ

LARDA diagnostic for LTX

- LARDA now means
 Lyman Alpha and
 Radiometer Diode Array
- Three positions in the filter slider: one for radiometer aperture, one for 1/2" Ly_α filter, one vacant (can use for other filter or different size radiometer aperture)
- The horizontal rectangular flange mounting provides much better plasma coverage in LTX (vs CDX-U mounting on 4" midplane flange)

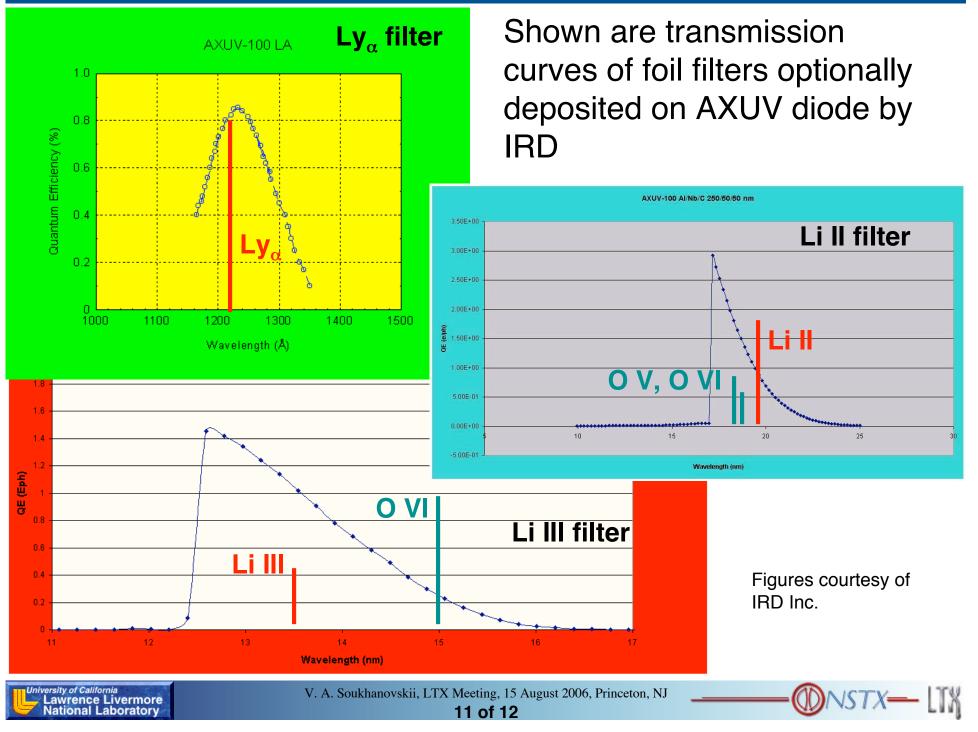






Options for single AXUV diode channel

- AXUV diodes come in various packaging:
 - No package need to design own mount
 - BNC package can be conveniently mounted in-vacuum on a BNC feedthrough
- AXUV diodes can be coated with multilayer transmission filters by IRD (see next page):
 - Ly_{α} filter available
 - Li III filter for $\lambda = 13.5$ nm
 - Li II filter for λ =19.9 nm
- Another option is to go with ARC transmission filter as on NSTX LADA for Ly_{α} measurements
- IRD also sells trans-impedance variable gain amplifiers for AXUV diodes



Options for LTX single AXUV diode channel

Summary

- LADA diagnostic worked well on NSTX in 2006
- In radiometric mode collected good data on ELM propagation along inner wall
- In filtered Ly_α mode the LADA diagnostic could only detect very bright emission from the inner detached divertor leg region (aperture was too small)
- LADA array is a good candidate for recycling measurements on LTX providing
 - Aperture sizes and mounting geometry properly arranged
 - We understand VUV light reflection from lithium-coated metal surfaces
- Useful links
 - International Radiation Detectors: www.ird-inc.com
 - Acton Research Corporation: www.acton-research.com

