

NSTX / NSTX-U EFIT and RWM Control (NSTX-U Phys. Ops. Course Talk #17)

S.A. Sabbagh, J.W. Berkery, J.M. Bialek, S.P. Gerhardt, K. Erickson, Y.S. Park, et al.

2015 Physics Operator Training PPPL 10/13/15

V1.5

Recall other NSTX-U Physics Operator Training talks for related information in this talk

NSTX-U Equilibrium Magnetics

□ Phys. Ops. Training Talk #11 – Equilibrium magnetics (C. Myers, et al.)

NSTX/NSTX-U EFIT Visualization

□ Viewing tools: EFITVIEWER: Talk #3 (B. Davis, et al.)

NSTX/NSTX-U RWM PID control and Mode ID algorithm Phys. Ops. Training Talk #12 – 3D Fields (S.P. Gerhardt, et al.)

NSTX/NSTX-U EFIT – it's not your usual EFIT

EFIT Implemented for NSTX

- Since the start of NSTX operations, "magnetics-only" runs have been run between-shots
 - Includes detailed reconstruction of vessel currents; shaping coil currents
- BUT ALSO diagnostic geometry allows <u>between-shots kinetic analysis</u>
 - "Kinetic EFITs" are run between-shots in NSTX ("partial kinetic")
- Also Beware! Certain aspects of NSTX EFIT and EFIT as run for DIII-D are different
 - e.g. NSTX EFIT MDSplus tree "EFIT02" is kinetic run (DIII-D: magnetic run)
 - "standard" EFIT code requires some alteration for NSTX / NSTX-U analysis

Code execution

- □ Implementation and daily oversight by Columbia U. group on NSTX/NSTX-U
 - Special analysis requests processed for Team members
- Est: 125 equil/shot * 2000 shots/yr * 2 varieties of runs * 10 years = 5 million NSTX EFITs available for analysis (not including run requests for people, tests)

Talk Outline

NSTX / NSTX-U EFIT

- Between-shots, etc. NSTX EFIT analysis (and some references)
 - Magnetics-only
 - Partial kinetic

(S.A. Sabbagh et al., Nucl. Fusion 44 (2004) 560)
 (stability analysis with partial kinetic reconstructions)

→ (S.A. Sabbagh et al., Nucl. Fusion **41** (2001) 1601)

- Access to documentation, analysis, some utilities
- NSTX-U EFIT modeling (to date) and present development plans

NSTX active RWM Control

- PID control
- Model-based RWM State-space Controller (RWMSC)

NSTX-U

Rotating, high β ST plasmas provide opportunity for advancing equilibrium reconstruction

Motivation

□ Equilibria are basic and essential components of plasma analysis

- Plasma parameters, profiles, boundary evolution, etc.
- used for transport / stability analysis, RF studies, power handling, etc.
- Reconstructions can be used to determine consistency between diagnostics

Topics

- Philosophy
- Summary of reconstruction technique
- □ Magnetic, kinetic, and kinetic + rotation reconstructions
- Application to NSTX
- Near-term and future directions

5

Goal: "rapidly" reconstruct "best" equilibrium

Philosophy

- "Best" model
 - for a given physics model / data set, reliably fit all data within error
 - improved physics/data set reduces artificial constraint
- "Rapid" reconstruction
 - between-shots
 - Find constraint set for a given (data,model) pair
- Upgrade toward "perfect" equilibrium
 - more complete physics
 - more complete data
 - less artificial constraint

EFIT^{*} provides a flexible equilibrium solution

□ Solve for (1) poloidal flux, ψ , and (2) toroidal current, J_t

□ that satisfy the GS equation: $\Delta^* \psi = -\mu_0 R J_t(\psi)$, where

 $\Delta^* \psi = \mathsf{R}^2 \nabla \bullet (\nabla \psi / \mathsf{R}^2); \ \mathsf{J}_t = \mathsf{R}\mathsf{p}'(\psi) + \mu_0 \mathsf{ff}'(\psi) / (4\pi^2 \mathsf{R}); \ \mathsf{f}(\psi) = \mathsf{R}\mathsf{B}_t; \ `\equiv \partial / \partial \psi$

that provide a least-squares fit to a set of constraints

Typical constraints for fit

- Diagnostic data response from plasma and external coils
 - magnetic (flux loops, I_p, coils, diamagnetic loop, stabilizing plates)
 - P_e from Thomson scattering
 - P_i , V_{ϕ} , Z_{eff} from charge exchange recomb. spectroscopy (CHERS)
 - field pitch angle from motional Stark effect data
- **D** Specified global / local parameters (ℓ_i , β , q_0 , edge J)
- Specified profile shapes, or boundary
 - Yields shaping coil currents, diagnostic measurements

*L. Lao, et al., Nucl. Fusion 25 (1985) 1611

7

- \$\psi_t = \psi_{plasma} + \psi_{coils}\$, J_t solved on rectangular grid
 For fitting, J_t modeled using various basis functions
 - polynomial
 - $\mathsf{P}'(\psi) = \Sigma (\alpha_j \psi_n)^j$
 - $FF'(\psi) = \Sigma(\gamma_j \psi_n)^j$
 - solution vector $\boldsymbol{\alpha} = [\alpha_j, \gamma_j]$
 - splines
 - greater profile flexibility, requires greater profile data resolution
- **D** External coil currents I_c , reference flux ψ_{ref}
- Solution vector for fit

$$\Box \ U = [I_c, \alpha, \psi_{ref}]$$

EFIT iterates finding J_t and solving for poloidal flux

Constraint equations

- $\Box D(t) = R \times U(t)$
 - (Response matrix R; D(t) = diagnostics data / constraints)
- Submatrices of R
 - Diagnostic response to I_{coils}: Coils Green function matrix G_c
 - Diagnostic response to J_t: Plasma Green function matrix G_p
 - Any extra data or artificial constraints relating the elements of U
- □ Find U that minimizes $\chi^2 = \Sigma (M_i C_i)^2 / \sigma_i^2$
 - □ Include fitting weights F: [F R x U F D] is minimized
 - □ Invert by singular value decomposition to find U(t) : (F,R,D: are $f(\psi)$)

 $\square Solve for \psi$

- \square ψ_{coils} solved by Green function response given I_c
- \Box ψ_{plasma} solved by inverting Grad-Shafranov equation
 - finite difference method, converge to specified tolerance
- $\hfill\square$ Boundary / ψ surfaces determined by contour routine

NSTX-U

NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et al.)

NSTX EFIT* alterations required for low A geometry

NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et al.)

Expanded magnetics in 2004 yielded more accurate Xpoint and plate currents

CY 2004 2 diagnostics Significant upgrade to magnetics set in 2004 □ 57 pickup coils vs. 23 new pickup 25 local loop voltage data vs. 9 for wall current (m) 2 0 coils distribution (tangential and normal) Compensation for stray field from TF leads -1 Stabilizing plates / divertor plates currents now better resolved -2 0.5 1.5 2.0 0.0 1.0 R(m)

Expanded magnetics set reproduces 3-D eddy currents as axisymmetric currents in NSTX EFIT

External magnetics data allow basic reconstruction

- Over 60 attempted variations to find final magnetics model ("EFIT01")
- Profile constraints: p'(0) = 0, (ff')'(1) = 0
 - constraints reproduce q₀ = 1 appearance, rational surface position from USXR
 - allows finite edge current (to model current transients)
- 4 profile variables (1 p', 3 ff'; 2nd order polynomial in p', 3rd order in ff')
- Goodness of fit χ² ~ 70 over majority of pulse for 108 measurements

 $\beta_t = 2\mu_0 / B_0^2$

NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et al.)

"Partial kinetic" prescription pioneered with NSTX EFIT reduces artificial constraint

- Over 110 attempted model variations used to find model
- 10 profile variables (5 p', 5 ff'); allows finite edge current
- External magnetics plus 20 Thomson scattering P_e points to constrain P profile shape
 - P_{tot} = P_e + "P_i" + "P_{fast}"; errors summed in quadrature (large total error)
- Diamagnetic flux to constrain stored energy
 - Greater freedom in ff' basis function for good fit over full discharge evolution and for various shots
 - Weak constraints on p'(0), ff'(0) yield "reasonable" q(0)

NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et al.)

NSTX EFIT equilibria used extensively in stability analyses

Control room ideal stability analysis with DCON

> time-evolved calculations

- Global mode growth rates in presence of passive stabilizers with VALEN
 - computed mode eigenfunction from DCON

NSTX-U

NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et al.)

Oct 13th, 2015 15

 $[\]beta_{\rm N} = 10^8 (\beta_{\rm t} a B_0 / l_{\rm p})$

High time resolution equilibrium analysis used in many studies (ELM study example)

Pure toroidal flow allows a tractable equilibrium solution

□ Solve $\nabla \phi$, $\nabla \psi$, ∇R components of equilibrium equation

□ MHD: $\rho \mathbf{v} \bullet \nabla \mathbf{v} = J \mathbf{x} \mathbf{B} - \nabla \mathbf{p}$; $\rho = \text{mass density}$

• $\nabla \phi$: $f(\psi) = RB_t$

• $\nabla R: 2P_d(\psi,R)/R = p'(\psi,R)|_{\psi}; P_d \equiv \rho(\psi,R)\omega^2(\psi)R^2/2$ (Bernoulli eq.)

- $\nabla \psi$: $\Delta^* \psi = -\mu_0 R^2 p'(\psi, R)|_R \mu_0^2 ff'(\psi)/(4\pi^2)$ (G.S. analog)
- **D** Pure toroidal rotation and $T = T(\psi)$ yields simple solution for p

• $p(\psi,R) = p_0(\psi) \exp(m_{fluid} \omega^2(\psi)(R^2 - R_t^2)/2T(\psi))$

Constraints for fit

EFIT reconstructs two new flux functions: $P_w(\psi)$, $P_0(\psi)$

• $P_w(\psi) \equiv \rho(\psi) R_t^2 \omega^2(\psi)/2$; $P_0(\psi)$ defined so that:

• $p(\psi,R) = P_0(\psi) \exp(P_w(\psi)/P_0(\psi) (R^2 - R_t^2)/R_t^2)$

Standard input: $P_w(\psi)$, $P_0(\psi)$ from approximation or transport code

New approach allowed by NSTX diagnostics

• Solve for $P_w(\psi)$, $P_0(\psi)$ in terms of measured $P(\psi,R)|_{z=0}$, $P_d(\psi,R)|_{z=0}$

NSTX EFIT reconstructions included T_i, V_o, Z_{eff} profiles by year 2004 (possible between-shots)

NSTX-U

NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et al.)

Flux-Te isotherm constraint added to NSTX EFIT reconstructions with rotation in 2005

19

NSTX EFIT: Diagnostics / model used for different between-shots analyses

Magnetics-only:

- Model: pressure is a function of poloidal flux; vessel currents included
- □ OH and shaping coil currents, I_p, flux-loops, pickup coils
- Loop voltage monitors (to provide distributed vessel current input)
- Partial kinetic (between-shots): as "magnetics-only", plus:
 - Thompson electron pressure profile
 - Diamagnetic loop
 - MSE (on request)
- □ Kinetic + rotation (possible between-shots): adds:
 - Model: Allows separation of magnetic flux and pressure surfaces
 - CHERS ion pressure profile
 - CHERS dynamic pressure profile (1/2 ρV²)
 - Flux-T_e isotherm constraint (req. for Bernoulli/G-S equation consistency)

(~ 200 measurements/equil)

NSTX-U

(~ 350 measurements/equil)

(~ 160 measurements/equil)

Where to find definitions of EFIT variables and other EFIT aspects?

□ EFIT Web page

- https://fusion.gat.com/theory/Efit
- DIII-D EFIT Tutorial
 - https://fusion.gat.com/theory-wiki/images/8/80/Lao_2013_EFIT_V4B.pdf
- DIII-D EFIT tools: https://fusion.gat.com/theory/Efittools
- □ NSTX/NSTX-U list of variables, EFITVIEWER
 - http://nstx.pppl.gov/nstx/Software/Applications/a-g-file-variables.txt (eqdsk vars)
 - http://nstx.pppl.gov/nstx/Software/Applications/efitviewer.html

PHOENIX Web page

- Phoenix: set of utilities used to run between-shots NSTX/NSTX-U EFIT
- http://www.pppl.gov/~sabbagh/PHOENIX/PHOENIXdoc.html
 - NOTE: WEB PAGE BEING UPDATED! (as of 10/13/15)
- Contains
 - Iinks to popular utilities: (i) 3D B field(R,Z), (ii) mapping, (iii) EQDSK retrieval
 - pointers to Green table areas, NSTX/NSTX-U executables, input files

NSTX-U

Where do I find NSTX/NSTX-U EFIT Green tables, executables, model data files?

□ Why?

EFIT input files range from being not well-commented to impenetrable

□ For Who?

People wanting to run NSTX/NSTX-U EFIT stand-alone, interface between-shots EFIT with real-time EFIT, et al.

NSTX/NSTX-U EFIT Green table areas

- /p/spitfire/s1/common/Greens/NSTX/(Month)(Year)
- Subdirectory name format: (Month)(Day)(Year)(Version)
 - Contains EFIT input files to build Green tables, and the tables themselves
 - □ These are typically impenetrable ASCII, (or binary)
 - Contains PHOENIX EFIT model data files
 - FILENAME: device(Month)(Day)(Year).dat: A well-commented ASCII file describing the NSTX/NSTX-U EFIT model (using standard EFIT conventions)
 - FILENAME: diagSpec(Month)(Day)(Year).dat: A well-commented ASCII file describing NSTX/NSTX-U magnetic diagnostics (standard EFIT conventions)
 - FILENAME: limiter(Month)(Day)(Year).dat: Specification of the limiter position
- Signals used in NSTX EFIT runs (the "signals file")
 - p/spitfire/s1/common/plasma/phoenix/cdata (names: "signals_"(date)(version))

NSTX-U

NSTX/NSTX-U EFIT: Locating results

NSTX-U

NSTX/NSTX-U EFIT: DERIVED tree

NSTX-U

How do I run NSTX/NSTX-U EFIT?

□ Can cases be run stand-alone if desired?

NSTX/NSTX-U EFIT executables / input files can be found here:

- /u/sabbagh/public/plasma/equilibrium/efit/exec executables here
- /p/spitfire/s1/common/plasma/exec executables here
- /p/bigblue/equil_runs/NSTX(-U)/(Mon)(Year)/(shot)(try) input files here
- Create SYMBOLIC LINK "link_efitx" Green table directories stated before
- <u>Note</u>: no public utilities to build NSTX/-U KEQDSK (data input/control) files (although Sabbagh / Columbia U. group can build files for you)

Why isn't it easier to build data files? Considering new tools

- One Modeling Framework for Integrated Tasks (OMFIT)
 - http://gafusion.github.io/OMFIT-source/
- Sabbagh has been following (extensive) OMFIT thread for a few months
- Present plan (by Sabbagh / Columbia U. group) is to interface NSTX-U EFIT to OMFIT, enabling code execution, analysis display capabilities

This should make running stand-alone NSTX-U EFIT easier

NSTX-U EFIT Model created and used for vacuum field test shots and CD-4 plasmas

NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et al.)

R(m)

NSTX-U EFIT Model created and used for vacuum field test shots and CD-4 plasmas

- Vessel current model essential for these runs
 - Up to 0.42MA vessel current modeled
 - **\Box** Reconstructions challenging at $I_p/I_{wall} \sim \frac{1}{4}$, but successful (good magnetics)

NSTX-U

NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et al.) Oct 13th, 2015

NSTX-U EFIT: Present actions and near-term upgrade plans for CY2015-2016 run

□ We have the latest EFIT code on the cluster. Tasks:

- Complete the installation / testing of code (make needed alterations)
- □ Speed tests for 128x128 spatial resolution (intended for 2015-2016+)
 - Two new dedicated computers (64 CPUs total) to support this
- Speed tests for 2 4 times more time points
 - Will be needed for long-pulse NSTX-U operation

PHOENIX code / EFIT alterations

- Update / optimize scripts; update parallel processing
- Changes to best support higher spatial, time resolution
 - I/O has been key bottleneck need to improve / optimize I/O to highest performance = minimum between-shots processing time at high resolution
- New data / routine processing
 - Additional Thomson channels to be added
 - Routine between-shots reconstructions with MSE (when data available)

<u>RWM Control on NSTX(-U)</u>: Model-based RWM state space controller in NSTX advances present PID controller

PID (a successful workhorse)

- □ Feedback logic operates to reduce n = 1 amplitude (n = 1 phase/ampl. input)
- □ No a priori knowledge of mode physics, controller stability
- Only knowledge of mode structure: spatial phase offset of upper/lower sensors

State space control

- States reproduce characteristics of full 3-D model: conducting structure, plasma response, mode shape, feedback control currents via matrix operations
 - Boozer permeability model used for plasma response
 - A key quantity to compare to measurements is mode pitch at large R
- Observer (computes sensor estimates)
 - RWM sensor estimates provided by established methods (Kalman filter)
 - useful as an analysis tool to compare plant output to measurements
- Controller (computes control currents)
 - Controller gain computed by established methods: gains for each coil and state
- Many shots taken in NSTX with RWM state space control
 - Two dedicated run days, near-record β_N/l_i in sustained plasmas, gain/phase scans, hundreds of shots run with low gain (e.g. observer scoping studies)

NSTX is a spherical torus equipped to study passive and active global MHD control

- High beta, low aspect ratio
 - □ R = 0.86 m, A > 1.27

- □ $\beta_t < 40\%, \beta_N > 7$
- Copper stabilizer plates for kink mode stabilization

Midplane control coils

- n = 1 3 field correction, magnetic braking of ω_φ by NTV
 n = 1 DW/M control
- $\square n = 1 \text{ RWM control}$

Combined sensor sets now used for RWM feedback

□ 48 upper/lower B_p, B_r

3D Structure Model

NSTX-U

NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et al.) Oct 13th, 2015 30

<u>RWM PID Control</u>: RWM/DEFC Feedback Methodology in the "tmf" Algorithm (see "3D Fields" Phys. Ops talk #12)

- □ We know the amplitude $B_1(t)$ and phase $\theta_1(t)$ of the detected 3D field, from both B_R and B_P sensors.
- □ Apply an n=1 field with:
 - Amplitude proportional to the detected 3-D field
 - Fixed phase shift from the detected 3-D field.

Find full detail on RWM PID control / Mode ID algorithm in the PCS shown in Phys. Ops. Training Talk #12 – 3D Fields (S.P. Gerhardt, et al.)

NSTX-U

Active RWM control: dual B_r + B_p sensor feedback gain and phase scans produce significantly reduced n = 1 field

NSTX-U

NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et al.) Oct 13th, 2015

32

RWM feedback using upper/lower B_p and B_r sensors modeled and compared to experiment

Oct 13th, 2015

33

New State Derivative Feedback Algorithm needed for Current **Control in the NSTX RWM State-space controller (RWMSC)**

State equations to advance $\vec{x} = A\vec{x} + B\vec{u}$ $\vec{u} = -K_c\vec{x} = \dot{I}_{cc}$ $\vec{y} = C\vec{x} + D\vec{u}$

Control vector, u; controller gain, K_c

Observer est., y; observer gain, K_{0}

 K_c , K_o computed by standard methods (e.g. Kalman filter used for observer)

- Previously published approach found to be formally "uncontrollable" when applied to current control
- State derivative feedback control approach

$$\dot{\vec{x}} = A\vec{x} + B\vec{u}$$
 $\vec{u} = -\hat{K}_c\dot{\vec{x}}$ \longrightarrow $\vec{I}_{cc} = -\hat{K}_c\vec{x}$

 $\dot{\vec{x}} = ((\mathbf{I} + B\hat{K}_{c})^{-1}A)\vec{x}$

e.g. T.H.S. Abdelaziz, M. Valasek., Proc. of 16th IFAC World Congress, 2005

 new Ricatti equations to solve to derive control matrices – still "standard" solutions for this in control theory literature

Advance discrete state vector $\hat{\vec{x}}_{t} = A\vec{x}_{t-1} + B\vec{u}_{t-1}; \hat{\vec{y}}_{t} = C\hat{\vec{x}}_{t}$ (time update) $\vec{x}_{t+1} = \hat{\vec{x}}_t + A^{-1}K_o(\vec{y}_{sensors(t)} - \hat{\vec{y}}_t) \quad \text{(measurement)}$

- Written into NSTX PCS
- General (portable) matrix output file for Phys. Operator
- Sabbagh has generalized offline IDL code for 6 SPAs
- Must now finalize PCS alteration with Keith Erickson

NSTX-U

Model-based RWM state space controller including 3D model of plasma and wall currents used at high β_N

NSTX-U

NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et al.)

Open-loop comparisons between measurements and RWM state space controller show importance of states and model

Improved agreement with sufficient number of states (wall detail) 3D detail of model important to improve agreement

36

NSTX-U

RWM state space controller sustains otherwise disrupted plasma caused by DC n = 1 applied field

- n = 1 DC applied field test
 - Generate resonant field amplication, disruption
 - Use of RWM state space controller sustains discharge

RWM state space controller sustains discharge at high β_N

> Best feedback phase produced long pulse, β_N = 6.4, β_N/l_i = 13

S. Sabbagh et al., Nucl. Fusion 53 (2013) 104007

NSTX RWM state space controller sustains high β_N, low l_i plasma

Run time allocated for continued experiments on NSTX-U

S. Sabbagh et al., Nucl. Fusion 53 (2013) 104007

NSTX-U

NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et al.) Oct 13th, 2015 38

Updated RWM State-space controller: How parameters are specified through the PCS – STATUS and PLANS

Sensors

- PCS widget allows selection of what sensors are being used (easy to choose)
- □ Initial plan for NSTX-U is to use B_p sensor differences (as for NSTX) (2015)
- □ Will also upgrade to incorporate B_r sensors in the NSTX-U RWMSC (~ 2016)

Actuators

Upgrade to utilize 6 independent SPA channels in the PCS (2015)

Model

- The control matrices (A,B,C,D) and vectors are loaded into the PCS by the Physics Operator by a file pre-created by MATLAB code in:
 - Filespace: /p/pcs/ops/lqg (filenames: "RWMSC-"(date)(version))
- □ (2015/16) Addition of n=2 eigenfunction; secondary n=1 eigenfunctions
 - Accomplished by adding two rows in the plant matrix per mode
 - This is straightforward, and <u>TRANSPARENT</u> to the Physics Operator

Multi-mode computation for RWM & DEFC: 2^{nd} eigenmode component has dominant amplitude at high β_N in NSTX 3D stabilizing structure

NSTX-U

<u>δBⁿ from wall, multi-mode response</u>

□ NSTX RWM not stabilized by ω_{ϕ}

- Computed growth time consistent with experiment
- 2nd eigenmode ("divertor") has larger amplitude than ballooning eigenmode

I NSTX RWM stabilized by ω_{ϕ} (or " α ")

- Ballooning eigenmode amplitude decreases relative to "divertor" mode
- Computed RWM rotation ~ 41 Hz, close to experimental value ~ 30 Hz
- ITER scenario IV multi-mode spectrum
 - □ Significant spectrum for n = 1 and 2

3D analysis of extended MHD sensors (in NSTX-U 5Yr plan) show significant mode ampl. off-midplane, + divertor region

NSTX-U

NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et al.)

Supporting slides follow

Rotation feedback controller designed for NSTX-U using non-resonant NTV and NBI used as actuators

• Momentum force balance – ω_{ϕ} decomposed into Bessel function states

$$\sum_{i} n_{i} m_{i} \left\langle R^{2} \right\rangle \frac{\partial \omega}{\partial t} = \left(\frac{\partial V}{\partial \rho} \right)^{T} \frac{\partial}{\partial \rho} \left[\frac{\partial V}{\partial \rho} \sum_{i} n_{i} m_{i} \chi_{\phi} \left\langle \left(R \nabla \rho \right)^{2} \right\rangle \frac{\partial \omega}{\partial \rho} \right] + T_{NBI} + T_{NTV}$$

□ NTV torque:

$$T_{NTV} \propto K \times f\left(n_{e,i}^{K1} T_{e,i}^{K2}\right) g\left(\delta B(\rho)\right) \left[I_{coil}^{2} \omega\right] \quad (\text{non-linear})$$

When T_i is included in NTV rotation controller model, 3D field current and NBI power can compensate for T_i variations

NSTX-U

NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et al.)

<u>NSTX-U</u>: RWM active control capability increases as proposed 3D coils upgrade (NCC coils) are added

NSTX-U

NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et al.)

Active RWM control design study for proposed NSTX-U 3D coil upgrade (NCC coils) shows superior capability

NSTX-U

NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et al.) Oct