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Control System Basics
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Control system goals

e Maintain plasma
parameters in steady

state
— High triangularity high
elongation plasma with
high non-inductive
current fraction at high
toroidal S to
demonstrate viability

of spherical torus
concept

» Integrated scenario
development tool
e Support physics
experiments ' A




Flexible Software Infrastructure

Centralized storage of shot setup

information MDSPIlus
Also archives real-time data — f Archiving

after shot for analysis

Real time
Processes

Manages real-time data i/o (FPDP)
Controls NSTX power supplies
Performs all plasma control functions
RF/NBI control (future)

Provides calibration information
for real-time data

Handles multiple user inputs

Stores data until next shot
Coordinates communication between
archiving/restore, user interface, and
host real-time processes

Host
Real time
Processes

F

aveserver

Manages data exchange between real-
time processes and “outside” world

= Shot data from waveserver

= Calibrations from MDSPlus

= Gas Valve configuration (EPICS)

Accepts input from multiple operators
Graphical user interface

Shot “construction” from multiple
archived shots

Interface to EFIT database

User
Interface

IILockserverl‘ * Controls shot sequence

Shot * Provides synchronized
‘ Timing shot start/end events




Real time information flow

e NSTX control PCS ———
stream 1s (nearly) GAS
centralized
through the PCS | '
via the FPDP data E
stream \
* Addition of new panarr e IR ——
SPA requires
modification of Converts data

Converts voltage
requests to firing

the software in the  to meaningful .

ACQ—RWM- physical units angles and applies

engineering
PSRTC branch of Comstrains
control AWM




Real Time Processes

Data Acquisition and Conversion

ACQ Acquires real-time data, converts to meaningful physical
quantities (fluxes, fields, currents, pressures, flow rates) and
distributes data to other real-time processes

Plasma Control System

Category

Ip/OH Control Controls OH current (pre/post shot) or Ip (during shot)

TF Control Controls Toroidal field current

Gas Injection

Controls gas flow either pre-programmed neutral pressure
feedback (prefill) or ne feedback {future}

Discharge Shape

Controls PF coil currents (pre/post shot) plasma shape with flux
projection (current ramp up/down)

Equil Calculates plasma boundary flux by inverting Grad-Shafranov
equation

Isoflux Controls PF coil currents during flat-top

System Controls whether PF control comes from Isoflux or Shape

category

Data Acquisition

Controls data flow and the operational mode of the PCS

Mode ID

Calculates RWM mode amplitude and phase using RWM sensors

RWM Control

Controls SPA power supplies

NBI

Modulates neutral beam sources

Power Supply Real-Time Control

psrtc

Chooses source of power supply control data (enables engineering
test shots and plasma control shots). Converts requested voltage
to thyristor firing angle (pulse width modulation). Enables bipolar
power supply operation.




Software based power supply
control
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Control categories

PLASMA CONTROL FOR FUTURE SHOT "hello (pic)"
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Categories correspond to controllable parameters
e Toroidal field

* I - current profile
* Poloidal field (shape and position)
* Plasma fuelling (bulk and impurities)

e Power (NBI and RF)

e Momentum input....

Each category can have several phases

e User defined (can be varied shot to shot)

e Each phase has one (real-time) algorithm (but an
algorithm can be used in several phases)

e (Can have alternate phase sequences (handles faults)



TF control

Shot 112403
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TF control (cont )

* Waveform editor
(point-and-click

IDL based
interface)
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e Data points can
also be typed in
by hand

e Easiest to simply
restore from
MDSplus
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Shot restore function
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Ip control (example 2)

OH current control

e Three phases of
control with 3
different algorithms

e Proportional and
integral gain on [,
as well as
“handoff” term

e 2 alternate phase
sequences (LLoad
overcurrent and
Insutficient 7))
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Plasma current control

Ramp down

Requested
Actual
//
-0.4 -0.2 0.0 0.2 0.4 06 08 1.0
time (s)
= Requested =
E Actual =
0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
time (s)
= OH current error Handoff I, integral error _%
g = - E
= I, current error 3
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
time (s)
E ~ VA
= P Requested E
= Actual =
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

time (s)



Force balance in an axisymmetric device

* In equilibrium plasma obeys the Grad-
Shafranov equation

JxB=VP = R-Z (1 N

)+a21p_ ,dP _ dF
R\ R R

0z dy dy

e Ideal method to control plasma position 1s
to solve the Grad-Shafranov equation in
real-time and use the result for feedback
control!



Plasma force balance

For a plasma current of IMA at a
radius of 1m the self generated
field 1s about wyl/27R ~0.2T

F~ ZJTRIPB ~ 1.2x10N ~
200,0001bs ~ 100tons!

Plasma mass ~ 3mg
— n=N/V = 1x10*m?3
— V =10m?3 of plasma R
— my=3.2x107%"kg

Plasma with unbalanced forces

will leave the vacuum vessel in
— t~(2*1m*3x10°%g/1.2x10°N)V? ~

Lus
Good force balance is important!




rtEFIT boundary value problem

. [ OH -
Measure the magnetic fluxes ' pFiAU

and fields on the vessel 21 —
boundary (70 measurements) | fp= -

Measure the coil and vessel
currents (31 measurements) !

Assume a functional form for
the current and pressure
profiles

4 [ Picture
\ showing the

RF Antenna P .
PCC magnetics PF5 location

of magnetic
field coils and
measurements
used in real
time
reconstruction

Z(m)

Solve GS equation iteratively




rtEFIT has slow and fast loops

rtEFIT does not mimic the
offline efit
— No iteration to convergenc
— New data on each loop

— Fast loop generates new
control commands based o
new data on
~200microsecond rate

Usually matches offline
calculation well
— Good control means small

changes from time point to
time point

\
slow loop m fast loop
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Control scheme.

e The user defines a
desired plasma boundary

 We define a series of line
segments chosen to
intersect all desired
plasma boundaries called
control segments

Z(m)

e Define the intersection of
the line segment and the
desired boundary the
control point




Isoflux control algorithm
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Real-time EFIT enables precise boundary control

Collaboration with
General Atomics has
brought real-time
equilibrium calculations

used for control to the ST

Longest IMA discharge
on NSTX made using
rtEFIT/isoflux control

Precise control makes
detailed shape variations
possible - important
research tool
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Maximum plasma elongation 1s limited
by axisymmetric vertical stability

* In order to elongate the
plasma, decrease the Vertical Stability
curvature of the applied field

— Reduce the radial component
of the field

* As the curvature changes - flapled
sign, the plasma becomes |
vertically unstable Current carrying Plasma

e Can control the instability ; B (2

using a time vary radial field p / / // /

— Ability to control the vertical
position depends on the growth
rate and the available feedback For a vertically stable plasma, as
power

B.(applied)

the plasma moves up, it
encounters a radial field that
pushes it down



NSTX control system has achieved high k

e [.ow latency key Graph showing the vertical stability space for NSTX,
. . K = b/a 1s the plasma elongation and /; is the normalized
to a(?hlevmg internal inductance. The boundary of the data is roughly a
Stablhty curve of constant vertical growth rate.
o8 T~ T T T T
 Have reached S
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maximum K ~ 3

s —— Before control upgrade

world record :
=High x achieved .  ©
in NSTX without |
internal coilsor  "°F
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control 1'4:_. R —
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Latency measurements

* One step latency
measurement
system 1nstalled

* Present latency

measured at
0.54ms
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Frequency (kH2)

RWM feedback controls instabilities
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By feedback combined with n =1 RWM control to reduce B,
fluctuations at varied plasma rotation levels
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Summary

NSTX control system 1s CPU based with a
distributed serial data acquisition system

Software 1s designed to have flexible
components

— Categories, phases, algorithms
The system 1s well established

New development is a continuous process



