FIR and mm-Wave Density Monitoring, Feedback Control and Fluctuation Diagnostics for NSTX

C.W. Domier

University of California, Davis

C.M. Muscatello, R. Barchfeld, C. Robertson, N.C. Luhmann, Jr.

July 26th, 2012

High-K Scattering System

High-K Scattering System: Launcher

Spherical Steering Mirror

High-K Scattering System: Receiver

600 GHz Poloidal Scattering System

- Replace 280 GHz high-k toroidal scattering system with a ~600 GHz poloidal scattering system
- CO₂ laser pumped FIR laser to provide ~100 mW of probe power at 600 GHz
- Probe beam launched from Bay G
- Scattered beams are collected through collection mirror at Bay L

Poloidal Scattering Geometries

New Bay L Port Cover

Poloidal Scattering System Goals

- Upgrade Goals
 - -Relocate entrant/exit ports

Entrance	Beam dump/detector
Bay G (preferably midplane port)	Bay L

- Increase probe beam frequency from 280 to 600 GHz for improved high-k resolution
- -Increase beam power for better SNR
- -Replace solid state 280 GHz LO with higher power FIR laser at 600 GHz
- -Steerable beam trajectory to sample poloidal and radial density fluctuations
- Increased radial and poloidal wave number coverage
- Greater spatial coverage
 - -Design a 5 to 8 channel receiver system

Far InfraRed Tangential Interferometer/ Polarimeter (Before Upgrade)

FIReTIP System (After Upgrade)

Locations of Poloidal Scattering and FIReTIP Diagnostics after Upgrade

- A: poliodal scattering optics & FIReTIP optics
- B: FIReTIP lasers and receivers location (three level stack on 10'x2' footprint)
- C: poloidal scattering source location (outside NSTX test cell, in the same area where high-k source was located)

FIReTIP System Goals

- Upgrade Goals
 - Reconfigure laser entrant/exit port locations

	Entrance	Exit
Ch 1	Beside NBI on Bay K	Bay F
Ch 2	Bay L	Bay I
Ch 3	Bay L	Вау В

- Better SNR with increased beam power
- Higher efficiency mixing of LO and output FIR

Poloidal Scattering System Status

- Current Status
 - Rebuilding and optimizing CO_2 and FIR lasers
 - Investigating methyl flouride versus formic acid as lasing mediums
 - Maximizing beam power
 - ≈150 W CO₂ laser
 - ≈100 mW FIR laser
 - Cost benefit analysis of new laser system

FIReTIP System Status

- Current Status
 - Refurbishing and optimizing CO_2 , FIR, Stark lasers
 - Remodeling Stark laser cavity for improved LO coupling
 - Optics redesign (TBD, restricted space will require multi-level platform for lasers and optics)

Microwave Imaging Reflectometry

- Higher B_T operation (0.5 T \rightarrow 1.0 T) allows broader X-mode accessibility
- Scattering window at Bay L has a large clear aperture (34cm x 12.7cm) able to accommodate imaging optics
- Possibility of swapping high-k receiver and MIR system
- Back-end electronics would be identical to planned DIII-D system

