

Supported by



#### Office of U.S. DEPARTMENT OF FNERGY Science

# **NSTX-U Collaboration Status and Plans for:** Local Helicity Injection - U. Wisconsin

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNI Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

R.J. Fonck, B. T. Lewicki, A. J. Redd

University of Wisconsin-Madison



**NSTX-U** Collaborator Research Plan Meetings **PPPL – LSB B318 April / May 2014** 





Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA. Frascati CEA. Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep

## U. Wisconsin Developing Local Helicity Injection for Plasma Startup and Drive in NSTX-U and FNSF

- Using Pegasus Ultralow-A ST to develop LHI startup
  - Current injected along field lines
  - Unstable current streams relax towards Taylor minimum energy (tokamak-like) state
  - Consistent with Helicity conservation
  - Location of injections in plasma periphery is flexible
    - E.g., divertor (high helicity input rate) vs nearmidplane (added poloidal induction boost)
- Present collaboration grant covers NSTX-U specific modeling and design considerations
  - Provide sufficiently realistic 1 MA NSTX-U startup scenarios for both outboard-midplane and divertor-region injection
  - Injector and power systems design compatible with NSTX-U environment
  - Validated against test results on Pegasus







# Topic 1: Research plans for this year (FY2014) in preparation for NSTX-U operations in FY2015

Advancing simulations of LHI-discharges

- Goal is to provide realistic 1 MA NSTX-U startup scenarios for both outboard-midplane and divertorregion injection
  - OD Power Balance Modeling: More self-consistent confinement and shape evolution
  - TSC Modeling: Varied transport models, and comparison to PEGASUS MPTS profiles
- Initial modeling of location of NSTX-U injectors for conceptual design
  - Inform design discussions
- Advancing compact high-V<sub>inj</sub> injectors
  - Frustum "cathanode" design, frustum shield + floating ring voltage dividers + local scraper limiters permit sustained injector operation with V<sub>inj</sub> up to 2 kV in vacuum
    - Compared to ~ 0.6 kV maximum without
- Needs: Graduate student support
  - Need to grow students into off-campus collaborations









## **Research Plans for FY2015-FY2017**

- Overall Goal: Design for NSTX-U LHI-startup to 1 MA
  - Leading to joint major proposal for implementation on NSTX-U
- FY2015 Predicting performance for NSTX-U LHI startup
  - Extend 0D projections to NSTX-U
    - Calibrate to equilibrium reconstructions in PEGASUS
  - Develop integrated TSC for LHI-startup
    - Include influence of passive plates
  - Pre-conceptual design discussions with NSTX-U for injector locations
- FY2016 Convergence to Conceptual Design
  - High I<sub>p</sub>: 1 MA in NSTX-U > 300+ kA validation in PEGASUS
    - Need to test helicity-input dominated regime expected in NSTX-U
  - OD and TSC modeling of both outboard midplane and divertor locations
  - Estimation of required helicity input rate
    - Voltage and Current requirements for NSTX-U
  - Tests of NSTX-U-relevant long-pulse injector arrays on PEGASUS

#### NSTX-U:



#### **P**EGASUS:





## **Research Plans for FY2015-FY2017 (cont'd)**

- FY2017 Moving to proposal for implementation on NSTX-U
  - Robust validated, integrated projections for NSTX-U
  - Toroidal field scaling and pulse-duration tests for 
    NSTX-U injectors
    - Need for active cooling, different aperture sizes, etc.
  - Test expanded boundary divertor injection, if needed
  - Design injectors, control, arc and bias power systems
  - Conceptual design discussions with NSTX-U for proposal
  - Submit joint UW/NSTX-U proposal for LHI on NSTX-U



Integrated 2-4 injector Assembly



Poloidal

**Off-midplane** 

Z < 0) Array

**Centerstack** 

Limiter



#### Simplified Power Systems:

- Common bias voltage
- Programmable arc supplies
- Passive cathode spot mitigation
- Possible active cathode spot suppression



## Topic 2: Ideas to enhance participation in NSTX-U research/ program by U.S. Universities, researchers, and students

- Deployment of a new LHI system on NSTX-U offers an opportunity to integrate a university team into the NSTX-U program
  - To offer value and increase the profile of this activity at the university, approach this as a joint team effort
    - Shared governance of both the development and operation: details TBD
    - Raise profile of this activity on campus to <u>enhance value to prospective students</u>
    - Need <u>continuous flow</u> of people between sites
    - <u>Remote operations to engage students early, during classroom phases</u>
  - Have major engineering efforts at UW
    - Injectors, Power systems, control systems
    - Offers students fusion engineering research opportunities
  - UW Team assigned to PPPL
    - Scientist (young), grad students, and engineering support
  - This will all have to be worked out in developing a joint proposal for this activity.
- On other front: enhancing student participation in NSTX-U from UW is a challenge, but important!
  - Geographical separation
  - Local broad fusion science program; off-campus research needs to compete with on-campus
  - Lack of people on campus to motivate and keep students connected to off-campus activities
    - Out-of-sight and out-of-mind problem
  - Some thoughts we're discussing
    - Identify niche areas which we can merge efforts from UW and NSTX-U (& DIII-D)
      - E.g., nonlinear ELM dynamics
      - Use such areas to raise the profile on campus and show seamless evolution from what students do here to what large national facilities offer
    - Set up visits to national facilities during operations for all of our (Pegasus) students to create a context for students with their peers
    - · Establish scientists on campus who concentrate on off-campus research to engage students
      - Connective tissue to our on-site collaborators
    - Set aside fraction of ports for "access-churn"
    - "Torkil Jensen" like runtime allocation to welcome brainstorming exploration
    - This all has to add value to the program to be justified

## **Topic 3: Additional Measurement Capabilities**

- Not generally applicable to this activity
- But, this was somewhat covered by McKee's talk
  - Integration of ELM nonlinear dynamics measurements on PEGASUS to BES measurements on NSTX-U
  - Needs added capabilities at NSTX-U and UW

