

NSTX-U halo current sensors: FY16 status and FY17 enhancements

C. E. Myers and S. P. Gerhardt

NSTX-U Diagnostic Research Plans, Part II May 27, 2016

Motivation and summary

- Non-axisymmetric + rotating halo currents pose a substantial hazard to tokamaks
 - Asymmetries can generate radial shift forces, especially on the centerstack
 - Rotation can resonate with the vessel and dynamically amplify the halo forces
 - This is a major concern for ITER (ITPA WG)
 - NSTX observed very high halo current rotation when compared to other devices

Motivation and summary

- Non-axisymmetric + rotating halo currents pose a substantial hazard to tokamaks
 - Asymmetries can generate radial shift forces, especially on the centerstack
 - Rotation can resonate with the vessel and dynamically amplify the halo forces
 - This is a major concern for ITER (ITPA WG)
 - NSTX observed very high halo current rotation when compared to other devices
- The path forward on NSTX-U
 - FY16: Partial shunt tile array in lower divertor
 - FY16: First shunt tile measurements on the center column of an ST
 - FY16: Rogowski measurements of inner-toouter vessel currents through CHI buswork
 - FY17: New, fully resolved array of shunt tiles in the upper divertor
 - FY17 (incremental): Enhanced 2D Mirnov arrays for studying I_p asymmetries

Sketch of present NSTX-U configuration (FY16)

Sketch of planned enhancements (FY17)

NSTX-U

Existing lower divertor configuration (FY16)

- Shunt tiles
 - Instrumented tiles with a shunt resistor to measure wall-normal halo currents
 - Six shunt tiles in OBD Row 4 and four tiles in Row 3
- Langmuir probes
 - Legacy cassette at D-E
 - New 17 channel high-density cassette at J-K
 - Can measure halo currents with higher spatial resolution if grounded to vessel
- 2D Mirnovs
 - OBD Mirnovs near Bay H
 - Two vertical columns of Mirnovs on opposite sides of the center stack (2D+1D)

Existing lower divertor configuration (FY16)

Existing center stack configuration (FY16)

NSTX-U

Existing center stack configuration (FY16)

NSTX-U

Existing center stack configuration (FY16)

NSTX-U

Existing upper divertor configuration (FY16)

- Why the upper divertor?
 - Avoid metal and/or lithium tile installations and cryo-pump

Enhanced upper divertor configuration (FY17)

- Why the upper divertor?
 - Avoid metal and/or lithium tile installations and cryo-pump
- Shunt tiles
 - Install 8 spokes of shunt tiles spanning OBD and IBDH
 - Utilize new stainless steel mesh insulation on the IBDH tiles?
- Langmuir probes
 - Add second high-density cassette near D-E
 - Initially run grounded
 - Compare directly with adjacent shunt tiles

Enhanced upper divertor configuration (FY17)

- Why the upper divertor?
 - Avoid metal and/or lithium tile installations and cryo-pump
- Shunt tiles
 - Install 8 spokes of shunt tiles spanning OBD and IBDH
 - Utilize new stainless steel mesh insulation on the IBDH tiles?
- Langmuir probes
 - Add second high-density cassette near D-E
 - Initially run grounded
 - Compare directly with adjacent shunt tiles
- 2D Mirnovs
 - Extend OBD mirnov arrays to passive plates
 - Measure 180° *I*_p asymmetries

Existing lower divertor configuration (FY16)

- Why the lower divertor?
 - Most tiles already exist
 - Combine with other diagnostic coverage

Enhanced lower divertor configuration (FY17)

- Why the lower divertor?
 - Most tiles already exist
 - Combine with other diagnostic coverage
- Shunt tiles
 - Add IBDH (inner target) ring to match the upper divertor
 - Fields and forces are high at that location

Enhanced lower divertor configuration (FY17)

- Why the lower divertor?
 - Most tiles already exist
 - Combine with other diagnostic coverage
- Shunt tiles
 - Add IBDH (inner target) ring to match the upper divertor
 - Fields and forces are high at that location
- 2D Mirnovs
 - Extend OBD mirnov arrays to passive plates
 - Measure $180^{\circ} I_{p}$ asymmetries
 - This upgrade must be done both on the upper and the lower to measure I_p

Center stack configuration (FY17)

NSTX-U

Channel accounting and prioritization

- Priority 1 upgrades (40 channels):
 - Upper divertor shunt tiles (OBD) = 8×4 = 32 channels
 - Upper divertor shunt tiles (IBDH) = 8 channels
- Priority 2 upgrades (25 channels):
 - Lower divertor shunt tiles (IBDH) = 8 channels
 - Upper divertor Langmuir probe cassette = 17 channels
- Priority 3 upgrades (32 channels):
 - Lower passive plate Mirnovs = 4×4 = 16 channels
 - Upper passive plate Mirnovs = 4×4 = 16 channels
- CHI buswork rogowskis (machine protection):
 - Measure inner-to-outer current during disruptions
 - 6 rogowskis in-place and operational on the lower CHI buswork (credit to SPG)
 - Additional rogowskis will be added if the upper buswork is used to connect the inner VV to the outer VV at the top of the machine