

Multi-energy soft x-ray (SXR) cameras for NSTX-U [DOE-ECRP]

Luis F. Delgado-Aparicio Princeton Plasma Physics Laboratory (PPPL)

Presented at the NSTX-U diagnostic research planning meeting Princeton, NJ 05/27/16

Hii DSFC Alcator C-Mod

MOTIVATION: To extract local parameters from the SXR emission in tokamak plasmas

 v_{ϕ} : toroidal velocity, M_Z : ion mass

 $T_{filter}(E_{ph})$: transmission function of filter

Detector response: S(E_{ph})

GOAL: Develop ME-SXR capability for MCF plasmas (w/o metallic plasma facing components)

A multi-energy soft x-ray (ME-SXR) imaging capability provide a unique opportunity of measuring, *simultaneously*, a variety of important plasma properties:

a) central electron temperature $(T_{e,0})$ and profiles $(T_e(R,t))$ b) medium- to high-Z impurity concentrations $(n_Z \text{ and } \Delta Z_{eff})$ c) the birth of suprathermal e⁻ $(n_{e,fast})$

Especially used in:

Spherical tokamaks: No fast T_e ECE-measurements in STs due to $Iow-B_{\phi}$

Applicable to/for:

Stability: Plasma positioning, low-freq. MHD phenomena, 3D RMP effects and runaway e⁻.

Transport: Impurity particle- & electron thermal-transport.

Heating: RF deposition (e.g. T_e , HHFW & LHCD \Rightarrow non-maxwellian e⁻).

ME-SXR & Thomson Scattering "combo" provided fast T_e(R,t) measurements in NSTX

"Fast" SXR temperature measurements done in:

- i. Steady state in Ohmic and NBI-heated scenarios (Delgado-Aparicio, et al., PPCF'07, RSI'10, D. J. Clayton, PPCF'13)
 - ii. RF heated plasmas using HHFW waves (Delgado-Aparicio, et al., JAP'07)
- iii. Plasmas with slow MHD (RWMs) using RMPs (Delgado-Aparicio, et al., PPCF'10)

CHALLENGE: Line emission from high–Z metals difficult the use of the multi-foil technique

Low-Z Boron (fully stripped) Carbon (fully stripped)

Medium-Z Argon (He- and H-like)

High-Z Molybdenum (Ne-like)

Nominal 5-7 year plan steps for implementation of high-Z wall in NSTX-U

NSTX-U

C-Mod

Pilatus cameras enable breakthrough of 100k pixels (minimum) at multiple energy ranges

Operates in single photon counting mode

CMOS hybrid pixel technology

Photon counting circuit in each pixel

• The comparator voltage of the readout chip (V_{cmp}) controls the *global* threshold energy.

• The threshold energy can be individually *refined/trimmed* using and in-pixel 6-bits DAC (V_{trim}).

V_{Comp} & V_{trim} allows individual coarse & fine tuning of energy range with E_{width} =0.6 keV

Photon counting circuit in each pixel

ME-SXR cameras for NSTX-U, L. Delgado-Aparicio, 05/27/16

Multiple detector thresholds allow "sampling" ONLY the continuum radiation from Ar and Mo

"Filtered" continuum radiation from Ar & Mo can be used to measure T_{e,0} & n_e²Z_{eff}

ME-SXR cameras for NSTX-U, L. Delgado-Aparicio, 05/27/16

Detector response with 4≲E_{cut-off}≤6 keV will be sensitive to <u>low-E</u> line-emission

Line-emission from Ar & Mo can be used to constrain nAr & nMo

ME-SXR cameras for NSTX-U, L. Delgado-Aparicio, 05/27/16

Imaging tests optimized in FY14–15 combined the best features from PHA & foil methods

T_{e,0} fits from core ME-SXR brightness measurements are in agreement with ECE

ME-SXR cameras for NSTX-U, L. Delgado-Aparicio, 05/27/16

Work flow- Reconstruction and analysis

1. ME-SXR tomography:

- Use magnetic flux surface reconstruction
 - i. Include the effect of centrifugal forces
 - ii. Tangential view will facilitate inversion
- Measurement of local emmisivities (B=MxE)

2. Use FLYCHK for continuum and line emission: Bremsstrahlung:

$$\frac{d\mathcal{P}_{ff}^{ij}(T_e, E)}{dE} \propto \frac{n_e^2 C_i(n_{ij}/n_i) Z_{ij}^2}{T_e^{1/2}} \mathcal{G}_{ff}(Z, T_e, E) \exp(-E/T_e)$$

Radiative recombination:

$$\frac{d\mathcal{P}_{fb}^{ij}(T_e, E)}{dE} \propto \frac{n_e^2 C_i(n_{ij}/n_i) Z_{ij}^2}{T_e^{1/2}} \beta_{ij}(T_e, E) \exp(-E/T_e)$$

Line emission:

$$\frac{\mathcal{P}_L^{ij}(T_e, E)}{E_L} \propto n_e^2 C_i \left(n_{ij} / n_i \right) \left\langle \sigma v(T_e, E)_{ij} \right\rangle$$

T_e^{SXR} in agreement with Thomson Scattering temperatures in RF ICRH & LHCD scenarios

Lower-hybrid current drive pulls non-Maxwellian tails inducing a downshift in the electron gyrofrequency ($\Omega = eB/\gamma m_e$) which "pollutes" the ECE measurements

ME-SXR technique can measure the background Mo and W-LBO contributions simultaneously

Measurements are consistent with other diagnostics (Bolometer and XTOMO)

Future work in NSTX-U (FY17 onwards)

- New detector response calibration of Pilatus3 system (FY16)
- Recently done at DECTRIS.
- Repeat with new NSTX-U detectors
- ② Pilatus3 detectors in NSTX-U:
- Sensitive to Ar, Ca, Fe, Mo & W emission
- Non-paralyzable photon counting technology allows > 10⁷ ph/s/p
- Post-doc and students

Pilatus III technology will enhance imaging capabilities

NSTX-U

Future work in NSTX-U (FY17 onwards)

- New detector response calibration of Pilatus3 system (FY16)
- Recently done at DECTRIS.
- Repeat with new NSTX-U detectors
- ② Pilatus3 detectors in NSTX-U:
- Sensitive to Ar, Ca, Fe, Mo & W emission
- Non-paralyzable photon counting technology allows > 10⁷ ph/s/p
- Post-doc and students

③ Integrate pol. & tang. views (FY17) => Engineer support!

Bay G top

NSTX-U

Options for tangential installation

1st choice – Bay K (off 2nd NBI) 2nd choice – Bay J (New mother flange!) Bay I (midplane-radial)

Awarded DOE-ECRP considered also study & control of Z-transport and Z-induced-MHD

- 1. Study the role of neoclassical (including rotation effects) and turbulent impurity transport (TEP, TD and || compressibility).
- Impurity peaking vs rotation and heating. 2.
- Effects of impurities on MHD at q=1 and q=23.
- 4. Control using NBI, RF, RMPs, droplets, LBO, Li

On

axis

a=2

b)