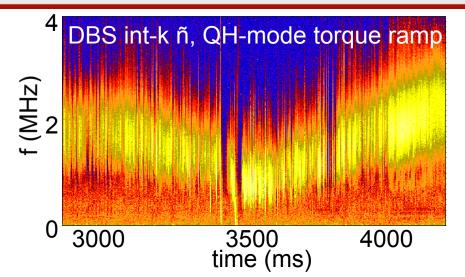

UCLA Diagnostic Development and Research Plans 2016-2019

T.L. Rhodes, Neal Crocker, Tony Peebles, Shige Kubota, Physics and Astronomy Dept, UCLA

Presented at the NSTX-U diagnostic research planning meeting May 27, 2016

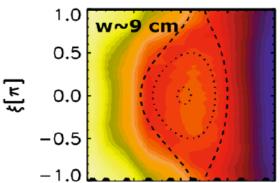


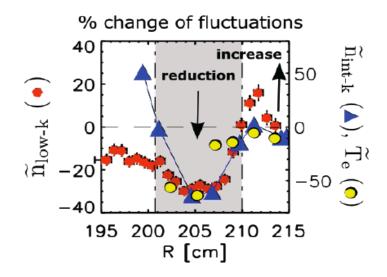
Three Main Components of UCLA Research Plans

 Diagnostics – Add two new measurement capabilities (Doppler backscattering ñ and cross-polarization scattering B̃) and expand existing fluctuation reflectometer (from 16 to 20 channels)

- Science Continue collaborative science role in fast particle and Alfvénic instabilities, pedestal turbulence and transport, ELMs, and EHO physics. Cross-device comparisons/experiments on the NSTX-U and DIII-D tokamaks. Close collaboration with NSTX-U team on testing and validating turbulence and transport simulations using both new and existing measurements.
- Education UCLA will expand the NSTX-U science collaboration with the addition of an on-site Postdoctoral fellow and an on-site Graduate Student

NSTX-U


Remotely controlled, multi-channel DBS for intermediate-k ñ, flow, GAM and zonal flows, ExB velocity, ELM, EHO activity


Transport and Turbulence, Energetic particles

- k_θρ_s ~ 0.5–10, and spatial and temporal resolutions Δr≤1 cm and Δt≤1µs
- Fills wavenumber gap between low-k BES and high-k scattering.
- Remote control of probed wavenumber
- Directly impacts testing and validation of codes/simulations
- Recent multi-field/multi-scale NTM interaction (graduate student L. Bardoczi, PRL'16)
- Potential to access kinetic Alfven Waves with k_rρ_s~1

H-mode, DIII-D

T_e and island flux surfaces

Cross-polarization scattering (CPS) to measure internal magnetic fluctuations will be installed on NSTX-U

Transport and Turbulence, Energetic particles

(d)

4500

4000

3500

DIII-D, β scan, Hmode 2.5 2.0 (a) 1.5 1.0 plasma / magnetic pressure β_{N} 0.5 100 80 (ms) 60 40 cofinement time τ_{z} 20 (b) 0 magnetic probe RMS (a.u.)

CPS magnetic fluctuation

- Addresses key physics questions on existence and behavior of microtearing modes, KBM, EM ETG/DW behavior, etc. and possible affect on transport.
 - Especially important at higher β as EM effects are increasingly important.
- CPS was developed under a DOE Diagnostic Development Grant
- Measure internal B_tilde over broad wavenumber range k_θρ_s ~ 0.2–17; time, space resolutions (Δr≤1 cm, Δt≤1µs)
- Directly impacts testing and validation of codes/simulations

BMS (a.u.) 0.00 0.04

RMS (a.u.)

.25

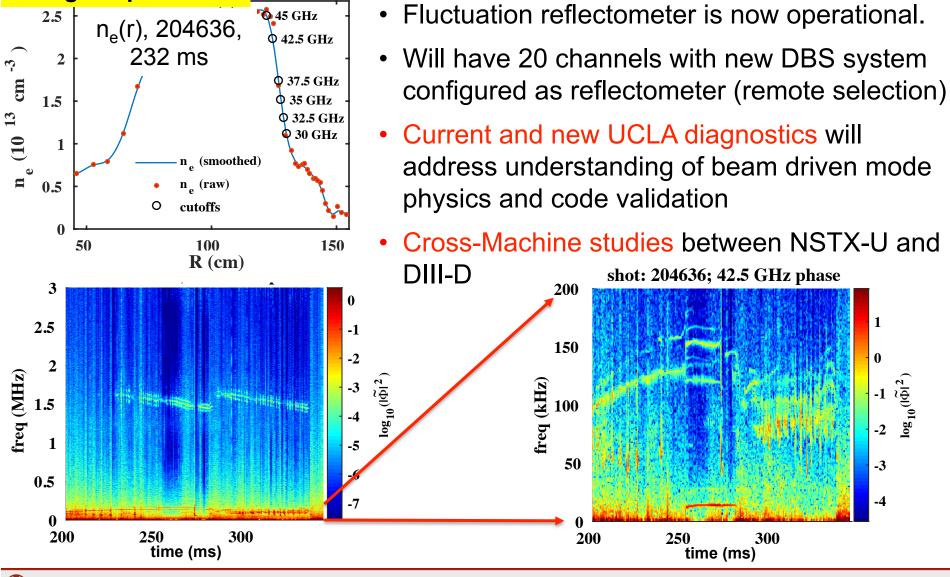
.20

.15 .10

.05

1500

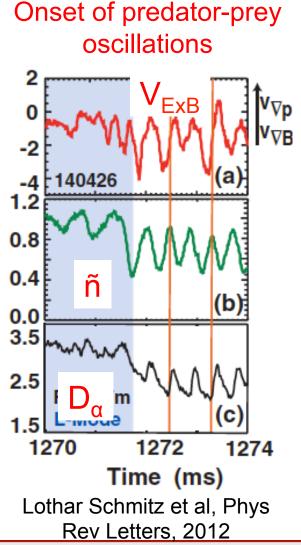
2000


2500

3000

time (msec)

Access higher density with four additional fluctuation reflectometer channels, continue science investigations of beam driven modes



UCLA Diagnostic Development and Research Plans 2016-2019, T.L. Rhodes, May 27, 2016

Design, fabricate, and install new multi-channel DBS for the pedestal and SOL

Transport and Turbulence, Pedestal Structure and Control

- New, multi-channel pedestal and SOL DBS, design and install in later years
 - Addresses important boundary issues including pedestal turbulence and flows, role of resonant magnetic perturbations, lithium granule plasma boundary effects, EHO, and ELM physics, etc.
- Example shown from top of pedestal on DIII-D

UCLA Diagnostic Development and Research Plans 2016-2019, T.L. Rhodes, May 27, 2016

Timeline: New UCLA diagnostics deployed in stages

Upgrade Outages				Out	age		Outage			Outage		
FY	2016			2017			2018			2019		
CY	2016				2017			2018				
reinstall fluctuation reflectometer	Complete											
move fluctuation reflectometer				move to	Bay I (1)							
DBS	install on Bay J											
Initial CPS				- Install	Bay J							
Upgrade CPS	Design (2)		Fabricate		Install							
new pedestal DBS						Design		Fabricat	е	Install		

Notes:

= Green shading denotes ready for physics

- (1) Move from Bay J port to Bay I port is likely.
- (2) Envision need for internal antennas/access

Personnel – we plan to expand our effort on NSTX-U

- We will expand the NSTX-U science collaboration with the addition of a fulltime, on-site Postdoctoral fellow (Fall, 2016) and a fulltime on-site Graduate Student will join us in 2017
- Neal Crocker offsite at 66% with periodic visits
- Tony Peebles offsite at 15%
- Shige Kubota on-site at 50% (50% on LTX-U, a good synergism)
- T. Rhodes offsite at ~33% with periodic visits

In conclusion, UCLA is excited about the science prospects on NSTX-U

- Multi-field diagnostics and science for: turbulence, flows, control, transport.
- Comparison and testing (validation) of simulations and theory of plasma turbulence, and transport using new and existing diagnostics will be a focus of the UCLA collaborative effort.
 - Will work closely with the NSTX-U theory and simulation team
- Physics and diagnostics for beam driven modes, comparison to simulations understand role of AEs on thermal transport.
- Address transients (ELMs, etc.) with high spatial/temporal resolution fluctuation diagnostics - Extend multi-scale, multi-field parameters to pedestal and SOL
- Cross-device comparisons/tests are important features of this effort facilitated by UCLA's physics & diagnostic roles on NSTX-U and DIII-D.

Thank you!

