

JHU Diagnostic Research

K. Tritz, J. Munoz Burgos, D. Stutman

NSTX-U Diagnostic Research Plans 5/27/2016

JHU research uses X-ray diagnostic expertise to address broad physics issues

- Macroscopic Stability topics enabled by high-speed internal X-ray measurements
 - measurements of Resistive Wall Mode (RWM) internal structure
 - plasma response to external 3D fields
 - localization of rotating tearing modes, magnetic islands
 - dynamics of plasma disruption, thermal quench
- Multi-scale Transport Physics topics enhanced using new X-ray diagnostics, fast T_e profile analysis
 - fast T_e profile diagnostic for thermal transport measurements
 - investigation of CAE/GAE effects on electron thermal transport
 - X-ray/VUV measurements of edge/core impurity transport
- Boundary Physics topics expanded with high-resolution edge measurement capabilities
 - effects of 3D fields, ELMs, Li pellets on pedestal T_e , n_e profiles
 - edge/SOL T_e , n_e profiles using advanced He line ratio analysis

JHU contributes to NSTX-U research with new diagnostic suite

- Multi-Energy Soft X-ray (MESXR) diagnostic enables 10kHz, high-resolution T_e profile measurements
 - tangentially-viewing, vertically stacked filtered diode arrays
 - complimentary core and high-resolution edge MESXR systems
 - unfiltered AXUV arrays used for diode-based bolometric P_{rad}
 - compact JHU-designed electronics selected for PPPL diodebased bolometer, UC-Irvine SSNPA

Neural Network (NN) analysis uses MESXR measurements to provide fast T_e

- Machine Learning discerns complex relationship between filtered X-ray measurements and T_e profile
 - NN trained using Thomson Scattering reference profiles
 - additional impurity information added from JHU TGIS
 - trained network can reconstruct 10kHz T_e profiles from MESXR
 - pseudo Monte-Carlo NN technique improves reconstruction
 - Goal: between shot fast T_e profiles for NSTX-U

JHU Diagnostic Research Plans 5/27/2016

<u>Transmission Grating Imaging Spectrometer</u> measures VUV/XUV impurity emission

- TGIS upgrade uses high sensitivity direct detection XUV CCD
 - midplane spatially & spectrally resolved impurity measurements
 - intrinsic med. to high-Z line emission, low-Z charge exchange
 - useful monitor for core impurity accumulation, transport
- Advanced atomic collisional radiative physics modeling code developed for TGIS analysis
 - in-situ calibration using CHERS carbon impurity measurement
 - provides quantitative measurements of impurity concentration
 - Z_{eff} from Bremsstrahlung spectrum

J.M. Muñoz Burgos, Phys. Plasmas 22, 123301 (2015)

(R_{Tan}= 122.0 cm)

200

300

400

Wavelength (Å)

100

Synthetic C⁵⁺ CI¹⁴⁺

Cu¹⁸⁺

Fe¹⁴⁺ Fe¹⁵⁺

500

600

700

TGIS Measured

Advanced time-dependent atomic modeling code for He line ratio T_e, n_e profiles

- He line ratio measurements provide T_e, n_e profiles from SOL to plasma pedestal region
 - measures $T_e < 100 eV$, compliments MESXR $T_e > 100 eV$
 - analysis technique validated on TEXTOR, ready for NSTX-U mid-plane or divertor diagnostic

JHU provides analysis support for PPPL/collaborator hardware (FTU, ORNL, ...)

Synthetic modeling of He gas puff, line ratio measurements, and T_e , n_e profiles

J.M. Muñoz Burgos, accepted Phys. Plasmas (2016)

JHU FY16 research priorities

- Lead impurity and thermal transport XPs
 XP 1551 "Core Impurity Transport Measurements at Fixed q-Profile"
 XP 1574 "Correlation of *AE bursts with fast core Te profiles"
- Provide crucial measurements for collaborator XPs
 - XP 1550 "Impurity transport vs torque in NBI heated H-Modes"
 - XP 1574 "Correlation of *AE bursts with fast core Te profiles"
 - XP 1554 "Make contact with NSTX for n=1 tearing mode stability"
 - XP 1547 "Stabilization of radiated-induced tearing modes (RiTMs) using off-axis-heating"

- XP 1548 "3D plasma response data for MHD and transport code validations"

JHU near term diagnostic plans

- Optimize TGIS FOV for charge exchange measurements
 - move diagnostic to Bay K midplane view if available
 - expand FOV for complete edge to core coverage
- Test diagnostic utility of TGIS divertor view
 previous synthetic study indicated divertor transport and spectroscopic T_e measurements with seeded impurity
- Develop radiation hardened TGIS detector
 - increased P_{NBI} and pulse length boosts neutron flux ~x10

- will test replacement of CCD detector with optically coupled image intensifier

Support incoming LLNL laser blow-off system with MESXR
 wide range of impurity injection capability coupled with high time/spatial resolution measurements will provide fantastic opportunities for low to high-Z impurity transport studies

